A Foundation Ontology for Global City Indicators

Mark S. Fox

Department of Mechanical and Industrial Engineering
University of Toronto
5 King’s College Road, Toronto ON, M5S 3G8, CANADA
Email: msf@eil.utoronto.ca
Tel: +1-416-414-9288

Originally Published: June, 2013 as Global Cities Institute Working Paper No. 3

Revised: 13 October 2017

ABSTRACT
This paper defines a generic, reusable ontology for representing the definitions of ISO37120 Global City Indicators and their instantiation on the Semantic Web by cities. The ontology combines and adapts existing foundation ontologies, and extends them with trans-foundation axioms. The foundation ontologies span analytical models (e.g., ratios), statistical models (e.g., population measurements), geo-spatial models (e.g., city boundaries), temporal models (e.g., time periods) and description logic models (e.g., definitions of students, teachers, etc.). It also incorporates meta-knowledge such as provenance, validity and trust. The ontology makes it possible to:

• create precise definitions of indicators thereby reducing the ambiguity of interpretation;
• represent the “data behind the data” enabling drilling down;
• determine the consistency of metrics. E.g., is the supporting data of the same scale, refer to the same place, measured in the same way, covering the same time period, etc.; and
• achieve interoperability, namely the ability to access, understand, merge and use measurement data available from datasets spread across the Semantic Web by providing a standard representation implemented in OWL 2.

Keywords: City Indicator, Ontology, Semantic Web, ISO 37120.

1. Introduction
Cities are moving towards policy-making based on data\(^1\). Yet it has been recognized by urban researchers, city professionals and political leaders that city level data is both incomplete and

\(^1\) “Data driven decision making is one of the reasons New York City is the safest big city in America,” said Mayor Bloomberg. “Just as data helps us reduce crime, prevent fire fatalities and keep incarceration levels low, we believe understanding data can help us work with judges and criminal
inconsistent. In 2007, it was recognized that “there are thousands of different sets of city (or urban) indicators and hundreds of agencies compiling and reviewing them. Most cities already have some degree of performance measurement in place. However, these indicators are usually not standardized, consistent or comparable (over time or across cities), nor do they have sufficient endorsement to be used as ongoing benchmarks.” (Hoornweg et al., 2007).

In response to this challenge, in 2010 the Global City Indicators Facility (GCIF)\(^2\) was created to work with cities globally in identifying a common set of indicators and establishing standardized definitions and methodologies that can be consistently applied globally (Global City Indicators Facility, 2010a; McCarney, 2011). The outcome of this effort is the international standard ISO 37120 “Sustainable development of communities — Indicators for city services and quality of life”\(^3\).

The primary problem with indicator development is that definitions are people oriented; they are provided in natural language, i.e., English, and not in a more formal, possibly computer readable language. As the old joke goes, ask two lawyers a question and you will get three opinions. The same generally holds true for most attempts at defining terminology, such as indicators, using an imprecise language like English. The reader of the definition imposes their own interpretation based on their understanding of the language and the environment in which they live (i.e., how their own city may define some terms).

Consider the definition of a Student/teacher ratio as provided in Hoornweg et al. (2007, p. 45): “Student/teacher ratio”\(^4\). This has been expanded by the World Bank (2008, p. 18) to: “Student/teacher ratio”, where the numerator is “Number of Students”, and the denominator is “Number of Teachers”. One problem is whether “student” refers to full time students, or part time students. Are they regular students or special needs students? Do they include kindergarten students or not? It is also difficult to compare an indicator for a single city across time if the definition of student changes. For example, today the educational system includes students with special needs, but 30 years ago they may not have been enrolled. Without a more precise definition of terms, it makes it difficult to compare an indicator across cities where each city interprets what a student is differently, or against itself where definitions change.

Obviously, the definition and documentation of indicators can be expanded, as has been done in ISO 37120. Following is the definition of student teacher ratio provided by the standard:

"The student/teacher ratio shall be expressed as the number of enrolled primary school students (numerator) divided by the number of full-time equivalent primary school classroom teachers (denominator). The result shall be expressed as the number of students per teacher. Private educational facilities shall not be included in the student/teacher ratio. One part-time student enrolment shall be counted as one full-time enrolment; in other words a student who attends school for half a day should be counted as a full-time enrolment. If a city reports full-time equivalent (FTE) enrolment where two

\(^2\) http://www.cityindicators.org/

\(^4\) Yes, just three words ☺.
half day students equal one full student enrolment), this shall be noted. The number of classroom teachers and other instructional staff (e.g. teachers’ aides, guidance counselors) shall not include administrators or other non-teaching staff. Kindergarten or preschool teachers and staff shall not be included. The number of teachers shall be counted in fifth time increments, for example, a teacher working one day per week should be counted as 0.2 teachers, and a teacher working three days per week should be counted as 0.6 teachers.”

The definition of student teacher ratio clearly addresses some of the issues raised above. Never the less, there will always be a disconnect between the actual value of a city’s indicator and the data sources and processes used to measure it; while the indicator’s value is recorded in a machine-readable form (e.g., database or semantic web), the sources and measurement processes are buried in datasets and documents that are inaccessible or only human readable. In the end, all we are left with is a record of indicator values without an understanding of what they actually measure and how they were measured. We have to rely on the good will of the people who reported to the data to adhere to the definitions.

Our goal is to formalize the definition of city indicators using the technology of Ontologies (Gruber, 1993; Grüninger & Fox, 1995) as implemented in the Semantic Web (Berners-Lee et al., 2001). By doing so we will:

• enable the representation of precise definitions thereby reducing the ambiguity of interpretation,
• take indicators out of the realm of humans and into the realm of computers where the world of Big Data, open source software, mobile apps, etc., can be applied to analyze and interpret the data,
• achieve interoperability, namely the ability to access, understand, merge and use indicator data available from datasets spread across the semantic web, and
• automate the detection of data inconsistency, and the root causes of variations.

In Section 2 and 3, we review ontologies and the ontological requirements for city indicators. We then present in section 4 the foundation ontology for representation of city indicator definitions using the student teacher ratio indicator as an example. Section 5 provides the ontology for representing meta information such as provenance, validity and trust. Section 6 provides an example of a student teacher ratio implemented using the ontology. Section 7 focuses on axioms for determining the consistency of indicators represented using the ontology. Section 8 then evaluates the ontology.

2. What is an Ontology?
An ontology is an “explicit representation of shared understanding” (Gruber, 1993). It “consists of a representational vocabulary with precise definitions of the meanings of the terms of this vocabulary plus a set of formal axioms that constrain interpretation and well-formed use of these terms” (Campbell & Shapiro, 1995).

More simply, an ontology is divided into two parts: classes and instances. A simple example of a class is “Teacher” which refers to the set of all teachers. Classes are arranged into
taxonomies (Figure 1). For example, Student⁵ and Teacher are subclasses of Person. All classes from the education domain are in green. The subClassOf relationship between Student and Person and Teacher and Person is interpreted as the set of all Students is a subset of the set of all Persons, and the set of all Teachers is a subset of the set of all Persons. Note that these subclasses do not have to be disjoint.

![Figure 1](image)

A Class can have zero or more properties. In Figure 1, Person has a property `has_age`. Properties can link one class to another (i.e., Object Properties) or a class to a literal such as a number or a string (i.e., Data Properties). `has_age` would be a data property as it would link Person to a positive integer⁶. Both Student and Teacher inherit this property from their super class Person. The Teacher class can be differentiated from the Person class by having additional properties unique to being a Teacher, such as their having one or more fields of expertise and that they teach at a school (Figure 2). Note that these properties may not refer to a specific field of expertise nor a specific school, but to classes of each. For example, in Figure 2 a Public_School_Teacher teaches at a Public_School. A Public_School is a subClassOf the more general School class.

⁵ In this paper, classes begin with an upper-case letter and properties with a lower-case letter. All terms appear in Courier font.

⁶ We visually depict data properties within the class box. Object properties are shown as links.
An instance refers to a particular member of the set of Teacher’s, e.g., “John Smith”. The class defines what properties an instance may possess and they types of values they may have. It is in the instance where specific values for properties are defined, such as fields of expertise, e.g., mathematics, and specific schools, e.g., Beaumont High School.

Before we can call a set of classes, properties and instances an ontology, we have one more component to add: axioms\(^7\). Axioms both define and constrain the interpretation of the classes and their properties. They allow us to make the transition from a class simply having a property to a class being defined by having a property. From a set perspective, axioms allow us to define a Teacher as the set of all Persons intersected with the set of Things having a property teaches_at a School.

A variety of methods exist for specifying axioms. The most common method on the Semantic Web is a version of Description Logic (Nardi & Brachman, 2002) implemented in the Semantic Web language OWL 2 (Hitzler et al., 2012). For each method a variety of logic theorem provers exist to evaluate the consistency of what is being represented based on the axioms. The specification of classes and axioms, and their consistency testing is facilitated using a graphical, interactive tool such as Protegé (Noy et al., 2001).

Continuing our example, Description Logic would define the following axioms:

\(^7\) Most ontologies found on the Semantic Web are little more than taxonomies of classes and properties without axioms.
<table>
<thead>
<tr>
<th>Description Logic Axiom</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student ⊑ Person</td>
<td>Student is a sub class of Person</td>
</tr>
<tr>
<td>Teacher ⊑ Person</td>
<td>Teacher is a sub class of Person</td>
</tr>
<tr>
<td>PublicSchoolTeacher ≡</td>
<td>A Public School Teacher is defined to be the</td>
</tr>
<tr>
<td>Teacher ⊓ ∃teaches_at.PublicSchool</td>
<td>class of all Teachers intersected with the class of</td>
</tr>
<tr>
<td></td>
<td>all Things that teach at at least one Public School.</td>
</tr>
</tbody>
</table>

The primary goal of ontology engineering is to develop a shareable representation of knowledge. The belief is that by engineering the classes and their axioms properly, they will be reusable across a broad spectrum of applications. With reuse, we can achieve interoperability, namely the ability to access, analyse and merge data from many diverse sources across the web because they use the same ontology or specify a mapping between their ontology and other more broadly used ontologies.

Ontology engineering begins by determining competency requirements for the target ontology, which is defined by a set of questions that the ontology must be able to answer (Grüninger & Fox, 1995). Based on these competency questions, the terms and axioms are developed. Development takes a layered approach where application specific ontologies (e.g., manufacturing ontologies) are defined in terms more foundational ontologies such as time, activity, resource, location, etc. For example, a manufacturing operation would be defined in terms of more general classes such as activities and resources. Secondly, if an ontology already exists on the Semantic Web that satisfies some or all of the competency requirements, then it will be reused.

In Section 4, we use the ontology engineering process by specifying examples of competency questions and defining city indicator specific classes and properties in terms of more generic ontologies found on the Semantic Web.

3. City Indicators

In this section we review earlier work related to ontologies and City Indicators.

The rapid growth of Asian cities led the Asian Development Bank to launch a city indicator project in 1999. The objectives of the project were to “to establish a policy-oriented urban indicators database for research, policy formulation, monitoring of the development impact of interventions in the urban sector, comparison of performance between cities, and improving the efficiency of urban service delivery.” (Westfall and de Villa, 2001 p. x). The result of the project provides the motivation and detailed definition of indicators. It also anticipates an important role for the World Wide Web in the representation and interconnection of indicator data.

The Organization for Economic Co-operation and Development (OECD: www.oecd.org) “provides a forum in which governments can work together to share experiences and seek solutions to common problems.” At the core of their work is a large number of indicators spanning topics such as health, education, environment and trade. The indicators are documented in detail, in English, and the results are published as spreadsheets. Definitions of the indicators using Semantic Web ontologies are not available. On the other hand, some...
OECD datasets have been the object of research in how to automatically transform statistical databases into linked data (Hausenblas et al., 2009; Capadisli et al., 2013).

As part of IBM’s Smart Cities initiative, they have developed an Ontology representing various types of city knowledge, including city organization and services, flow of events and messages, and key performance indicators (Uceda-Sosa et al., 2011). OWL definitions of the classes and properties are provided. Axiomatization is limited and so its use of foundational ontologies.

In light of previous efforts to define city indicators, Hoornweg et al. (2007), identified the following aspects a good “indicator must possess to be accurate, timely and relevant for policy purposes:

- **Objective**: clear, well defined, precise and unambiguous, simple to understand.
- **Relevant**: directly related to the objectives.
- **Measurable and replicable**: easily quantifiable, systematically observable.
- **Auditible**: valid, subject to third-party verification, quality controlled data (legitimacy across users).
- **Statistically** representative at the city level.
- **Comparable/ Standardized** longitudinally (over time) and transversally (across cities).
- **Flexible**: can accommodate continuous improvements to what is measured and how. Have a formal mechanism for all cities and interested parties to comment on.
- **Potentially Predictive**: extrapolation over time and to other cities that share common environments.
- **Effective**: tool in decision making as well as in the planning for and management of the local system.
- **Economical**: easy to obtain/inexpensive to collect. Use of existing data.
- **Interrelated**: indicators should be constructed in an interconnected fashion (social, environmental and economics).
- **Consistent and sustainable over time**: frequently presented and independent of external capacity and funding support.”

The *raison d'être* for the Global City Indicator Facility and the creation of ISO 37120 is to define city indicators that satisfy these aspects. The Global City Indicator Ontology translates these definitions into a form that is machine readable while enhancing many of the aspects above.

4. A Foundation Ontology for Global City Indicators

In this section we develop a foundation ontology for representing Global City Indicators (GCI) definitions (classes) and their instances. We illustrate the construction of the GCI ontology using a single city indicator: Student/Teacher Ratio (STR). A number of issues arise in representing its definition. These issues will be addressed as we build the GCI ontology “one brick at a time” using foundational ontologies.

4.1. Placename Ontology

- What is the city being measured?
- What area does it cover?
• What places does it contain?

The STR is computed over a geographic area. In the case of GCIIs, it would be a city. Hence, a requirement of the GCI ontology is the ability to identify the geographic area over which the indicator has been calculated. That is, to associate a "placename" with a geographic area. Such placenames could conceivably be applied to areas larger than a city, such as a region, state or country, or smaller than a city, such as a neighborhood or postal code. For example, a reference to Toronto should cover the city of Toronto but a reference to the Greater Toronto Area should cover the larger area encompassing neighbouring cities. But it must be clear which each refers to. A second requirement is that when two indicators are supposed to be computed over the same geographic area, they are in fact the same area. This means that an area has to have a unique identifier.

The problem of being able to uniquely identify places has been exacerbated by government open data initiatives. Cities are publishing enormous amounts of data and this data can accessed from around the world over the internet. Most of the data that is published is in the form of spreadsheets, word documents, etc. containing solely text descriptions. As open data is separated from its source, and lacking any provenance information, it becomes increasingly important to be able to uniquely identify where it comes from, we are not really sure which city this data is from. There are many Paris', Torontos, Berlins, etc. around the world.

There are a number of ontologies that represent geographic and place information. Schema.org provides classes of placenames such as sc:City, sc:Country, and sc:State. It also provides classes for sc:GeoCoordinates (i.e., elevation, latitude, and longitude) and sc:GeoShape denoted by a polygon or circle. The Linkedgeodata.org ontology extends what can have a placename by providing classes for gd:neighborhood, gd:building, gd:bridge, gd:hospital, gd:airport, gd:prison, etc.

The GeoNames project provides over ten million placenames spanning the world. It provides an International Resource Identifier (IRI) for every placename so that they can be uniquely referred to. The GeoNames' placenames are instantiations of the Geonames Ontology that integrates a number of ontologies, including Schema.org and Linkedgeodata.org, to provide a broad set of classes that span almost every conceivable type of place. Geonames also provides a web interface that allows anyone to search for and/or add new placenames to its knowledge base.

At the core of the Geonames ontology is the geo:Feature. A geo:Feature contains the following properties:

- name: text name of the feature, e.g., "Toronto".
- alternativeName - a number of alternative names for the feature.

8 The Schema.org ontology is available at: http://schema.org/. We will use the prefix “sc:” to identify classes and properties from the ontology.

9 The Linkedgeodata.org Ontology is available at: http://www.linkedgeodata.org/ontology/. We will use the prefix “gd:” to identify classes and properties from the ontology.

10 The Geonames Ontology is available at: http://www.geonames.org/ontology/ontology_v3.1.rdf#. We will use the prefix “geo:” to identify classes and properties from the ontology.
• featureClass – Class of feature such as Administrative (e.g., state, parish), Hydrographic (e.g., stream, lake), and Area (e.g., Parks).
• featureCode – Code for the feature within the class.
• population – Population of the feature.
• postalCode – One or more postal codes in which the feature resides.
• wgs84_pos:lat – Latitude of the feature.
• wgs84_pos:long – Longitude of the feature.
• nearbyFeatures – Features spatially located nearby.
• wikipediaArticle – One or more articles in Wikipedia about the feature.

A key component is the geo:featureCode which adapts and extends the feature codes developed by the United States National Geospatial-Intelligence Agency (NGA).

In Figure 3, we show how the Geonames ontology is related to the schema.org ontology.

The unique IRI for the city of Toronto is: http://www.geonames.org/6167865. Being an instance of sc:City, it inherits a geo:featureCode of geo:P.PPL which denotes “a city, town, village, or other agglomeration of buildings where people live and work”. It is asserted to have a geo:parentCountry of geo:6251999 which is the unique IRI for Canada.

4.2. Measurement Ontology
• How is the indicator derived?
• What is its scale? Can one indicator be 2x another?
• What are its units? What is its scale? Mega, kilo?

A city indicator is a measure of some property of a city. At the core of an indicator lies a number. The question is what does that number represent? Of course, a written explanation of the indicator is provided, but that is for human consumption. The problem is how do we define an indicator in a way that the computers can understand?

Measurement ontologies provide the basic concepts that underlie numbers. They divide measurement into a Quantity such as length *(the what)* and a Unit of Measure such as meters *(the how)*. A Unit of Measure has a scale classified as interval or ratio, and whether the number is the composition of dimensions such as velocity being composed of speed and direction, and whether it has a starting point such as absolute zero on the Kelvin scale.

In the case of the STR, the purpose of a measurement ontology is to provide the underlying semantics of the number, such as what is being measured and the unit of measurement. The importance of grounding an indicator in measurement ontology is to assure that the numbers are comparable, not that they are measuring the same thing (which is dealt with later), but the actual measures are of the same type, e.g., ratio of student and teacher population counts, or that the counts of the student and teacher populations are of the same magnitude (i.e., thousands vs millions).

Upper level ontologies such as SUMO (Niles and Pease, 2001) and CYC (Matuszek et al., 2006) provide classes for representing quantities, but the OM ontology ¹¹ (Rijgersberg et al., 2011) provides a more rigorous ontology based on measurement theory. In the following, we review some of the basics of the OM ontology:

<table>
<thead>
<tr>
<th>Class</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>Refers to what is being measured. It links the phenomenon (e.g., an object) being measured to the value of the measurement (Measure).</td>
<td>Length, diameter.</td>
</tr>
<tr>
<td>Unit_of_measure</td>
<td>"A unit of measure is a definite magnitude of a quantity, defined and adopted by convention and/or by law. It is used as a standard for measurement of the same quantity, where any other value of the quantity can be expressed as a simple multiple of the unit of measure.”</td>
<td>"For example, length is a quantity; the meter is a unit of length that represents a definite predetermined length. When we say 10 meter (or 10 m), we actually mean 10 times the definite predetermined length called ‘meter’."</td>
</tr>
</tbody>
</table>

¹¹ The OM ontology can be found at: http://www.wurvoc.org/vocabularies/om-1.8/. We will use the prefix "om:" to identify classes and properties from the ontology. Definitions and examples are taken directly from the ontology where quoted.
Measure | “Combines a number to a unit of measure on an interval or ratio scale.” | “3 metres”, “10 kilograms”

Figure 4 represents the outcome we wish to achieve in using the OM ontology to represent an indicator. The STR is a subclass of Quantity that has a value that is a subclass of Measure whose units are a Population_ratio_unit which is a subclass of Unit of Measure. The actual value measured is a property of the Measure subclass Student_teacher_ratio_measure.

4.3. Quantity Algebra
The OM ontology provides some basic quantity manipulation classes. In the following we introduce basic product, addition and subtraction quantities.

<table>
<thead>
<tr>
<th>Class</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product.Quantity</td>
<td>owl:subClassOf</td>
<td>Quantity</td>
</tr>
<tr>
<td></td>
<td>term_1</td>
<td>exactly 1 (Quantity and (unit_of_measure_of some Self))</td>
</tr>
<tr>
<td></td>
<td>term_2</td>
<td>exactly 1 Quantity</td>
</tr>
<tr>
<td>Sum.Quantity</td>
<td>owl:subClassOf</td>
<td>Quantity</td>
</tr>
<tr>
<td></td>
<td>sum_term</td>
<td>only</td>
</tr>
</tbody>
</table>
An important aspect of the definition of Sum and Difference is that the terms of the operation are the same unit of measure as the result. For Product, the second term is a Quantity, which should be a numeric quantity.

4.4. Population Measurement Ontology
In order to realize the structure in Figure 4, there are several building blocks that need to be put in place. The STR is the ratio of Student to Teacher, which is the ratio of the number of students to the number of teachers. Both students and teachers represent sets, i.e., the set of all students within a city (Placename) and the set of teachers within the same city (Placename). We need to represent the cardinality of these sets.

Figure 5 depicts the new Unit of Measure classes required to represent the number of students and teachers. We start by defining a unit of measure: gci:Cardinality_unit. Just as the meter is the unit of measure for length, a gci:Cardinality_unit is the unit of measure for the size of a set. The gci:Cardinality_unit is a ratio scale: gci:Cardinality_scale, which is a subclass of om:Ratio_scale and is has a zero element (namely zero).
Figure 5

In Figure 6, we define gci:population_cardinality_unit to be an instance of gci:Cardinality_unit, which is the unit of measure for the cardinality of set defined by a Population (defined in the next section), and associate the symbol “pc” with it. For example, 1100pc represents a population cardinality (or size) of 1100. We can take full advantage of prefix notations available in OM to scale the numbers by defining units of measures: gci:kilopc, gci:megapc and gci:gigapc which are multiples of gci:population_cardinality_unit. 1.1 kilopc represents 1100 pc.
With the above defined, we can now introduce the unit of measure for measuring a population ratio such as STR. `gci:population_ratio_unit` is defined to be an instance of `om:Unit_division`. It has two properties:

- **om:numerator** whose range is restricted to being a `gci:population_cardinality_unit`.
- **om:denominator** whose range is restricted to being a `gci:population_cardinality_unit`.

In other words, a population ratio is derived from two population cardinalities.
The above, provides the unit of measures for populations (pc) and population ratios (pc/pc) (the how). We now have to define what we are measuring which is referred to as a Quantity in the OM ontology. First, we need to define the om:Quantity for the size of the teacher and student populations from which the STR is derived. In Figure 8 we introduce gci:Population_size as a subclass of om:Quantity. Its om:unit_of_measure is the gci:population_cardinality_unit.
We now have the requisite infrastructure to define GCIs (Figure 9). First we define the class of GCIs, gci:Global_city_indicator, as a subclass of om:Quantity. All GCIs will be a subclass of gci:Global_city_indicator. gci:Education_GCI is introduced as a subclass of gci:Global_city_indicator with a property that it is a gci:for_city_service gci:Education_city_service. Simply, this denotes that this indicator is for the education city service.

The actual value for a city’s STR will be an instance of the quantity gci:Student_teacher_ratio_GCI class, which is a subclass of gci:Education_GCI. It has the following properties:

- **om:unit_of_measure**, whose range is the gci:Population_ratio_unit. This signifies that the quantity is a ratio with a numerator and denominator that are restricted to being gci:population_cardinality_unit’s.
- **gci:numerator & gci:denominator**, whose ranges are gci:Student_population_size and gci:Teacher_population_size classes respectively, which satisfy the gci:population_ratio_unit numerator and denominator constraints.
- **gci:for_city**, whose range is a geo:Feature that uniquely identifies the city for which this is an indicator.

The Quantity instance would link the object being measured (i.e., City) with the actual measurement being an instance of a Measure. The instance of Measure then contains the measurement’s numeric value and a link the Unit of measure.
At this point you may have noticed that neither the gci:Student_population_size nor gci:Teacher_population_size have been linked to the students nor teachers within a city. We do so in the next section where we introduce the statistics ontology.

4.5. Statistics Ontology

- What defines the members of the population?
- Over what area is the population being drawn from?
- What is its unit of measure?
- How is the population size estimated?

The STR indicator is based on a measure of the number of students and teachers within a population designated by a city (Placename). One can view both as a statistical measurement in the sense that there is a population that we want to perform a measurement of, namely a city population, and we are counting the number of members that satisfy a description of a Student and a Teacher, respectively. While the STR requires a count of the population, other measures would require statistical measures of mean, deviation, etc. of other characteristics of the population.
Anticipating the larger requirements of the Global City Indicator Ontology, we have adopted the GovStat12 general statistics ontology (Pattuelli, 2009). Figure 10 depicts a subset of the classes and properties of the GovStat ontology incorporated in the GCIO. The core class is the \texttt{gs:Population} to be measured. (A definition of the Population is not provided and will be part of our extension to GovStat in Section 4.6.) A \texttt{gs:Population} is linked to a parameter (e.g., mean, standard deviation, cardinality) by the \texttt{gs:is_described_by} property, and the parameter is a sub class of \texttt{gs:Parameter}. Depending on the subclass of \texttt{gs:Parameter}, there is a reverse link back to the \texttt{gs:Population}.

- \texttt{gs:Cardinality} parameter, links back to the \texttt{gs:Population} using \texttt{gs:cardinality_of},
- \texttt{gs:Sum} parameter links back using the \texttt{gs:sum_of} property.
- \texttt{gs:Mean} parameter links back using the \texttt{gs:mean_of} property.

\texttt{gs:Parameter} links via the \texttt{gs:parameter_of_var} property to a \texttt{gs:Variable} which specifies the variable/data property that is to be summed, averaged, etc. across the members of the \texttt{gs:Population}. \texttt{gs:Variable} has a data property, \texttt{gs:has_Name} specifies the variable/property over which the parameter is derived. It is specified as a string since a property cannot be a value of another property in Protégé’s version of OWL (i.e., not full DL).

In statistics it is almost always the case that only a portion of the population is measured. This portion is represented by the class \texttt{gs:Sample}, and the parameter being measured is represented as a subclass of \texttt{gs:Statistic}. Finally, the variable for which the parameter is being measured is defined by the class \texttt{gs:Observation} which \texttt{gs:Statistic} links to via the property \texttt{gs:is_composed_of}, and the actual variable which is a subclass of \texttt{gs:Variable} is linked to \texttt{gs:Observation} via the property \texttt{gs:is_a_characteristic_of}.

12 The GovStat Ontology is not available online, but a version with the GCI extensions can be found at: http://ontology.eil.utoronto.ca/govstat#. We will use the prefix “gs:” to identify classes and properties from the ontology.
What we are missing at this point is a definition of the population that we are measuring or from which a sample is to be taken. For the STR indicator the `gs:Population` must identify the area in which the population resides, i.e., the city, and what characterizes a member of the population, namely the characteristics of a Student or Teacher. For example, the characteristics of a Teacher could be:

- Fulltime, defined as teaching 30 or more hours per week, and
• Teaches at the primary or secondary level, where primary spans grades 1 thru 8 and secondary spans 9 thru 12.

As depicted in Figure 11, we have extended the GovStat ontology as follows:
• Added a property to gs:Population, gs:located_in, that identifies the area that the Population is drawn from.
• Added a property to gs:Population, gs:defined_by, that identifies the class that all members of the Population are subsumed by.

In order to complete the definition of gci:Population_size pictured above, gci:Population_size is not only a subclass of om:Quantity, but is also a subclass of gs:Cardinality, implying that it is a gs:Parameter of a gs:Population. Furthermore, gci:cardinality_of is a subproperty of the inverse of gs:is_described_by, which is gs:description_of.
Figure 12 depicts the pattern for a quantity that is the sum of the values of a property possessed by each member of a population. gs:Sum is a gs:Parameter which is also a om:Quantity. gs:sum_of links the gs:Sum quantity to the population that it sums over. gs:parameter_of_var links to gs:Variable which identifies the property of the members of the population that contains the value that is summed. The property is specified as a string value for the data property gs:has_name.\(^\text{13}\) Protege does not support DL Full. Properties cannot be values of an object property.

\(^{13}\) Protege does not support DL Full. Properties cannot be values of an object property.
4.6. Populations
Measuring parameters of populations lies at the heart of city indicators. By populations, we are not referring just to people, but in a statistical sense to a finite collection of “things” under consideration. For education indicators, the populations include students and teachers. For environment indicators, the populations include sensor readings taken at different points in time. For fire and safety indicators, the populations include 911 call events. In the following, we deconstruct the semantics of populations so that we can precisely model the definition of an indicator and its supporting data. We extend the Govstat ontology to represent the semantics of populations. The Govstat ontology is imported directly into our ontology. The Govstat classes and properties that are reused have the prefix of "gs" and appear in pink.

Membership Extent
The first question we have to answer is what defines the members of a population? Consider the population of teachers. The ISO 37120 definition states:

“The number of classroom teachers and other instructional staff (e.g. teachers’ aides, guidance counselors) shall not include administrators or other non-teaching staff. Kindergarten or pre-school teachers and staff shall not be included.”
The authors of this definition assume that the reader understands the terms teacher, classroom, instructional staff, guidance counselors, etc. In other words, they assume that the reader has a “common sense” understanding of the domain of education. Hence, to model this population, we have to link the concept of Population to the concepts in an education ontology (or at least the portions of the education domain relevant to the ISO 37120 Education theme) that define its members.

To accommodate the definition of a Population’s member, we add the following property depicted in Figure 13:

- **defined_by**: This property links a Population to a class that defines the necessary and/or sufficient conditions to be a member of the population. Note that the range can be any subclass of owl:Thing.

![Figure 13: Population Member Definition](image)

Continuing with our education example, if we want to define a population of students, we link the 'Population' class to the Student class using 'defined_by'. The definition of 'Student' will then have to be rich enough to determine membership in the 'Population', as specified by the ISO 37120 Education theme. Figure 14 shows a portion of the numerator of the indicator pattern specialized for the 'Student' population. The Student population is 'defined_by' the 'Student' class. The Description Logic definition of the Student class provides the necessary and sufficient conditions for membership in the Student population. One of those conditions is that it has a 'has_enrollment' property linking to an 'Enrollment' class.
Spatial Extent

A second semantic requirement for the representation of indicator populations is the specification of the physical area from which the population is drawn. In theory, it should be an entire city, but in practice it may be drawn from a larger or smaller area. There are two approaches to identifying a population’s spatial extent. The first identifies a physical area by a place name, aka toponym, and the second by geo-spatial location.

Toponyms can not only identify cities, but are used to identify any type of place, including villages, neighbourhoods, parks, buildings, hills, hospitals, and schools. But with the toponym approach, there is an additional requirement that we be able to uniquely identify a place. Names of cities are often duplicated throughout the world. How do we know that when we refer to Toronto, that it is the Toronto in Ontario, or the Toronto in Ohio or California? The semantic web provides a solution, namely each city or town of Toronto has an IRI that uniquely identifies it. Geonames\(^\text{14}\) is both a web site and a namespace. It contains over ten million place names, each having a unique IRI. For example, the geoname IRI for the City of Toronto Ontario is http://www.geonames.org/6167865.

In parallel with the development of Geonames, the Schema.org taxonomy has been developed to tag web page content with associated classes and properties, thereby making it easier for search engines to index content. Schema.org provides a rich set of place related

\(^{14}\) Note that other datasets exist that provided toponyms, such as LinkedGeodata (http://linkedgeodata.org), and can be substituted for Geonames' 'feature'.

© 2017 Mark S. Fox

Global City Indicator Ontology
classes, e.g., City, State, Airport, Mountain, that can be used to extend geoname Features. This is accomplished by making a specific IRI for a place like Toronto an instance (type) of a schema.org class such as City.

The second method of identifying the spatial extent of a population is to specify its geospatial location. This can be accomplished by specifying a polygon whose vertices are specified as latitude and longitude. A number of geometry ontologies exist, including OpenGIS (www.opengis.net) which provide for the representation of geometric classes such as Point, Line, Circle, and Polygon, and relating them using properties such as intersects, overlaps, contains, and disjoint. We can integrate place names with geospatial information by making a specific place name an instance (type) of Polygon. We can associate with the place name the geospatial polygon that bounds the city, and relate it to other place names using geometry properties to other place names.

Figure 15 depicts the integration of both place name and geo-spatial information with Population. The property 'located_in' is added to 'Population' to specify both the IRI of the place name and its spatial geometry.

![Figure 15: Integration of Spatial Extent](image)

Temporal Extent
A third semantic requirement for the representation of indicator populations is the specification of the time period over which the population is drawn. The periods over which populations are measured may vary by starting time, end time, duration and granularity. For example, in the student teacher ratio indicator, the student population may have been drawn in 2012 and the denominator, teacher population during 2013. Or more specific start and end times may be specified within the same year, such as February 1, 2013 to March 28, 2013 for the student population, and September 15 to November 30th for the teacher population. The ability to specify the time period at any level of granularity is important.
The OWL-Time ontology (Hobbs & Pan, 2006) satisfies these requirements. It provides for the representation of time points, intervals and durations, plus the specification of these at any level of granularity: year, month, week, day, hour, minutes and second. Secondly it provides a rich set of temporal relations, such as before, overlaps and during, that can be used to link and reason over the temporal points and intervals.

We extend the definition of a Population by adding the property ‘for_time_interval’\(^{15}\). The range of the property is a 'DateTimeInterval' that specifies the start and end date/times for the Population. Note that we use a 'DateTimeInterval' as opposed to 'Year', which is the range of the 'forDateTimeDescription' property of the 'ISO37120Indicator' class. Indicators are defined for a specific year, but the data used to derive may be sub or super intervals of that year. Figure 16 depicts this addition.

![Figure 16: Integration of Temporal Extent](image)

4.7. City Resident Population
The size of a city's resident population is a common denominator for many indicators. With the extensions to the Govstat ontology, we can now define a city resident population to be used as the denominator in many indicators. Key to the definition is who resides in a city.

\(^{15}\) The three properties 'located_in', 'defined_by' and 'for_time_interval' could have been replaced with a single property such as 'constraint_to' whose range is a class that contains the three properties. The reason for having the three properties attached directly to Population is to highlight the importance of these constraints.
A Resident is a prov:Person that resides in the city for which the indicator is begin measured. The city of the primary residence is constrained to be the city of the indicator, which cannot be specified in OWL.

4.8. Indicator Pattern
We can now introduce the generic indicator pattern that forms the basis of most indicators found in the ISO 37120 standard.
4.9. Summary
In this section we provided the foundation ontologies necessary for representing the definitions of GCIs. Our goal is to provide a precise representation of the semantic intent of an indicator’s definition as provided in ISO 37120. By providing the definition, we have made it possible to automate tasks such as checking that the data provided by a city is consistent with the ISO definitions. We have also made it possible to automate longitudinal and transversal analysis.

5. Indicator Meta Information
Where the previous section focused on representing indicator definitions as found in ISO 37120, this section focuses on the representation of meta-information associated with the actual data provided by cities.

5.1. Provenance Ontology

- Who created the actual value of the GCI?
- When was it created?
- What process was used to create it?
- What datasets is it based on?
An important aspect of an indicator is its provenance, namely where did it come from and how was it derived. Over the last decade, concerns around information validity, provenance and trust have grown. With the web now containing trillions of documents authored by millions of people, the need to know whether the content is valid, where the content came from and whether to trust its creator, has taken on an increasing importance.

Much of the research into provenance has grown out of workflow management where the focus has been the evolution of a document as it proceeds through a sequence of edits, perhaps by different people and/or systems. Tracking the various versions created, who did what and when has been the primary concern. This research has culminated in the proposed Semantic Web ontology: PROV16 (Belhajjame et al., 2012), which is based on the work of Hartig & Zhao (2010) and Moreau et al. (2010). In the following we outline the basic concepts of the PROV ontology and indicate how it is incorporated into the GCI ontology.

At the heart of the PROV ontology are three classes:

- \texttt{pr:Entity}: represents any artifact for which we want to specify its provenance. In our case it would be an indicator or the data from which the indicator was directly or indirectly derived.
- \texttt{pr:Activity}: the action (or sequence of actions) that creates or transforms an entity. In our case it may be a computation performed over some data set such as census data.
- \texttt{pr:Agent}: the person, organization, or system that performs or plays some role in the activity that transforms an entity. In our case it may be a software application that mines a data set or a person who reviews a data set.

Along with these classes are defined a set of properties that define the causal relationship among entities and activities:

- \texttt{pr:wasGeneratedBy}: It links an \texttt{pr:Entity} (domain) to a \texttt{pr:Activity} (range), identifying the activity that generated the entity.
- \texttt{pr:used}: It links an \texttt{pr:Activity} (domain) to an \texttt{pr:Entity} (range), identifying the entities used by an activity to produce a new entity.
- \texttt{pr:wasAssociatedWith}: It links an \texttt{pr:Activity} (domain) to a \texttt{pr:Agent} (range), identifying the agents that play a role in the activity.
- \texttt{pr:wasAttributedTo}: It links an \texttt{pr:Entity} (domain) to an \texttt{pr:Agent} (range), identifying the agents that had a role in creating the entity.
- \texttt{pr:wasRevisionOf}: Links two \texttt{pr:Entity}'s where domain entity is a revision of the range entity.
- \texttt{pr:wasDerivedFrom}: Links two \texttt{pr:Entity}'s where domain entity was derived from the range entity (without indicating the method of derivation).

Finally, the PROV ontology provides a time property that specifies the time an entity was created.

16 The PROV Ontology can be found at: http://www.w3.org/ns/prov#. We will use the prefix “pr:” to identify classes and properties from the ontology.
• **pr:generatedAtTime**: It links a pr:Entity (domain) to a pr:time (range), identifying the time the entity was generated.

Figure 19 depicts the integration of the PROV ontology into the GCI ontology. First, om:Measure is a owl:subClassOf pr:Entity. Consequently, every indicator's Measure we create will be treated as a pr:Entity and inherit its properties, including pr:generatedAtTime which provides us with the time that the indicator was created, and pr:wasRevisionOf which allows us to track revisions to the value of the indicator. It also allows us to link the GCIs to a pr:Activity via a pr:wasGeneratedBy to show what activity generated the GCI measure, and to a pr:Agent via a pr:wasAttributedTo to show who the source of the GCI measure was. Finally, the gci:numerator and gci:denominator are made to be owl:subPropertyOf pr:wasDerivedFrom to show what entities were used to derive the GCI (not shown).

5.2. Time Ontology

- When was this GCI constructed?
- Over what period of time should the GCI be considered valid?
- Was the teacher population sizing done during the same time that the student population sizing was done?
Fundamental to the concept of provenance is the time at which measurements are taken, computed or derived. Questions may arise regarding the temporal relationship among indicators and among measurements. Not just at what time something occurred, but whether something occurred before, after or during some external event. For example, was “Total Employment” of New Orleans determined before or after Hurricane Katrina? Or did Katrina take place during the interval that the indicator was determined? To answer these questions, we need a much richer notion of time that supports reasoning about time points, time intervals and the relationships amongst them.

Many time ontologies have been developed. We have chosen OWL-Time\(^\text{17}\) for its simplicity and ability to represent time as a point or interval. OWL-Time is based on the work of Allen & Ferguson (1997) and described in Hobbs & Pan (2006).

The root class for OWL-Time is the `ot:TemporalEntity`. It has two subclasses:

- `ot:Instant`: It represents a time point.
- `ot:Interval`: It represents a period of time with a beginning and an end. A `ot:ProperInterval` is an `ot:Interval` where the start time is less than the end time.

An `ot:TemporalEntity` has a starting Instant, ending Instant and duration as specified by the following properties:

- `ot:hasBeginning`: links a `ot:TemporalEntity` (domain) to an `ot:Instant` (range) where the latter denotes the beginning of the `ot:TemporalEntity`.
- `ot:hasEnd`: links a `ot:TemporalEntity` (domain) to an `ot:Instant` (range) where the latter denotes the end of the `ot:TemporalEntity`.
- `ot:hasDurationDescription`: links a `ot:TemporalEntity` (domain) to an `ot:Interval` (range) where the latter denotes the duration of the `ot:DurationDescription`.

Two other classes of note are:

- `ot:DateTimeDescription`: A specification of a date plus time using a year, month, day, hour, etc. set of properties.
- `ot:DurationDescription`: is a class that specifies a duration as any combination of years, weeks, days, hours, minutes, and seconds.

Finally, there is a set of properties that relate `ot:ProperInterval`’s, including `ot:inside`, `ot:intervalOverlaps`, `ot:intervalAfter`, `ot:intervalContains`, etc.

Figure 20 depicts the addition of the time ontology to the GCI ontology. The integration of the time ontology occurs with the `pr:Entity`. We modify `pr:generatedAtTime` from being a data property to an object property whose range is an `ot:TemporalEntity`. With this change the time that a `pr:Entity` is generated can be either a point or an interval. Secondly, it can take advantage of the relational reasoning (i.e., is the generation time of a `pr:Entity` before, during, or after some other `pr:Entity` or event) supported by the ontology.

\(^{17}\) The OWL-Time Ontology can be found at: http://www.w3.org/2006/time. We will use the prefix “ot:” to identify classes and properties from the ontology.
At times we have to refer to durations as quantities. The OM ontology provides a om:Duration which is a quantity whose unit of measure can be om:minute-time, om:second-time, om:hour, etc.

5.3. Validity Ontology

- Is the GCI believed to be an accurate measure by its creator?
- Over what time is it believed to be accurate?

An ongoing issue with the web is whether information/data found on a page is correct (true) or incorrect (false). Whether the creator of the information deliberately makes false statements, or unknowingly copies false information from another site, there is no way to discern what is correct from incorrect. The same holds with city indicators. Data and analyses that are believed to be true at the time they are gathered or computed, may be found over time to be incorrect. Or it may not be clear whether the information is true or not, especially if the indicator is based on a sampling of a population, but one can assign a degree of validity to the information. In addition, in the case where data is derived from other data, and the latter is no longer valid at some point of time, then the former becomes invalid for that same point of
time. For example, gci:Student_teacher_ratio is derived from gci:Student_population_size and gci:Teacher_population_size, if gci:Student_population_size is valid only within an interval of time such as the year for which it is gathered, then outside of that interval, both gci:Student_population_size's and its dependent gci:Student_teacher_ratio's validity are unknown.

Fox & Huang (2005) provide an ontology, called the Knowledge Provenance Ontology\(^\text{18}\) (KP), for representing the validity (certainty) of a proposition. It assigns to a “proposition” a validity between [0,1] or “unknown.” This validity may be dynamic in that it changes over time. An example of the latter is any population count that is representative of the population only at a point of time or for an interval of time. The time interval during which the proposition’s validity is known is called the “effective” time interval.

A set of axioms are defined in Huang & Fox (2004a; 2004b) that define how validity is propagated within a dependency network. In the simple case, if a GCI is assigned a validity of 1 (i.e., it is true) but it also has an effective time interval specified for it, then the GCI is valid during that time interval and unknown otherwise. If any GCIs’ validity are unknown during a time interval then any GCIs’ validity that depend on it are also unknown during the same time interval.

At the core of KP is the kp:KP_prop class which identifies a proposition to which a validity, effective time interval and dependencies can be assigned. We add to the definition of om:Measure that it is a owl:SubClassOf kp:KP_prop (Figure 21). Hence any gci:Global_city_indicator measure is also a proposition to which we can assign a validity, effective time interval and dependencies.

\(^{18}\) The Knowledge Provenance Ontology can be found at: http://ontology.eil.utoronto.ca/kp#. We will use the prefix “kp:” to identify classes and properties from the ontology.
The following properties are associated with a kp:KP_prop and are inherited by all gci:Global_city_indicator_measures's:

- **kp:assigned_certainty_degree**: This is a data property that maps a kp:KP_prop (domain) onto a number [0,1] (range) or unknown. It is the degree of certainty that the proposition is valid (true) from the perspective of the creator of the gci:Global_city_indicator measure.

- **kp:effective**: This is a data property that maps a kp:KP_prop (domain) onto a time interval (range). It is the time during which the kp:assigned_certainty_degree is valid for the gci:Global_city_indicator measure.

- **kp:is_dependent_on**: This is a object property that maps a kp:KP_prop (domain) onto another kp:KP_prop (range). It states that the kp:assigned_certainty_degree for the gci:Global_city_indicator measure is dependent upon one or more kp:KP_prop's.

Given that kp:is_dependent_on is a generalization of pr:wasDerivedFrom, we add to the KP ontology that pr:wasDerivedFrom is an owl:subPropertyOf kp:is_depedendent_on (not shown).
5.4. Dynamic Placenames

- Has the city's boundary changed during the time between two measures of an indicator?

Consider the unique placename for the City of Toronto. If we wish to do a longitudinal analysis of an indicator for Toronto, we run into a problem. The geographic definition of Toronto changed in 1998 after its amalgamation with five adjacent municipalities. Yet in the Geonames ontology there is a single Toronto; there is no representation for how placenames evolve over time. Kauppinen and Hyvönen (2007) have addressed this problem. They propose an ontology based on Spatial Temporal Regions. A placename has associated with it a spatial region, defined by a polygon, and a time interval over which the placename and the region do not change.

In the Global City Indicator Ontology we will refer to placenames whose spatial regions can change over time as Dynamic Placenames. Rather than adopt Kauppinen and Hyvönen’s terminology directly, we adapt their ideas by reusing the provenance, time and validity ontologies to represent how place names change over time and the cause of their change.

Figure 22 depicts a simplified example of how to represent a dynamic placename for the city of Toronto. First, the placename for each version of the City of Toronto will have to be unique. In the example we append the time period for each version to the name, though just having a unique number is sufficient. We link the [1998-] version of Toronto to the [1967-1998] version via a pr:wasRevisionOf property from the provenance ontology to show that the former is a revision of the latter. Secondly, for each placename we link it using the validity property kp:effective to a time interval over which the placename is valid.

From a longitudinal analysis perspective, when we compare indicators for a single city over time, we will know the extent to which these comparisons are valid as the city’s composition may have changed over time.
5.5. Trust Ontology

- Do you trust the creator of the GCI?
- Do you trust the process used to create the GCI?
- How does your trust affect the validity of the GCI?

The final piece of the GCI ontology foundation is the representation of trust. The problem we wish to address is how to represent the degree of trust we have in the creator of indicator values and the data from which they are derived. Huang & Fox (2006) define trust as follows:

"Trust is the psychological state comprising (1) expectancy: the trustor expects a specific behavior of the trustee such as providing valid information or effectively performing cooperative actions; (2) belief: the trustor believes that expectancy is true, based on evidence of the trustee’s competence and goodwill; (3) willingness to be vulnerable: the trustor is willing to be vulnerable to that belief in a specific context where the information is used or the actions are applied."

This representation of trust differs from degree of validity as trust refers not to the degree of certainty in the data but our trust in the agent/organization that produced the data. The obvious example is how to represent the trust we have in an organization that has a history of "cooking the numbers." The consequence of not having trust in the producer of data is that the validity one assigns to data or indicator will be reduced by this lack of trust.
Huang & Fox (2006) and Huang (2008) provide an ontology of trust19. The ontology views trust as occurring between two agents, where agent\(_1\) has or has not trust in agent\(_2\). Trust arises out of direct experience or the experience of others whom you may trust. Trust is also context dependent. For example, agent\(_1\) may trust agent\(_2\) in providing information on topics relevant to their expertise, such as a meteorologist characterizing the climate of a city, but lacks trust in agent\(_2\) outside of their field of expertise. Finally, they identify two types of trust: 1) trust in belief, where agent\(_1\) believes what agent\(_2\) believes, and 2) trust in performance, where agent\(_1\) believes that agent\(_2\) will perform an activity properly.

The Trust Ontology also addresses how the validity of an indicator or data changes by taking the original degree of validity, asserted by the creator (agent\(_2\)), and modifying it by the degree of trust the “user” (agent\(_1\)) has in the creator. This resultant validity is dependent on agent\(_1\) and agent\(_2\).

19 The Trust Ontology can be found at: http://ontology.eil.utoronto.ca/trust#. We will use the prefix “tr:” to identify classes and properties from the ontology.
In Figure 23 we integrate the Trust Ontology by defining the class `tr:Trust` which has a data property `tr:trust_degree` which is the degree to which the `tr:trustor` trusts the `tr:trustee`. It is specialized into two classes:

- `tr:Trust_p`, which is trust in performance. It has an object property `tr:trusted_Activity` that links it to a `pr:Activity`, and
- `tr:Trust_b`, which is trust in belief. It has an object property `tr:trusted_Entity` that links it to a `pr:Entity`, which all `gci:Global_city_indicator` measures are a subclass of.

We then extend the KP Ontology by adding an object property, `tr:Trusted_certainty_degree`, that links a `kp:KP_prop` to a new class that represents the certainty degree computed by combining the GCI’s `tr:assigned_certainty_degree` provided by its creator (who is the `tr:trustee`) and the trust that the user (who is the `tr:trustor`) has in the creator. The latter is represented by an object property `tr:has_Trust` that links the `tr:Trusted_certainty_degree` to the `tr:Trust` that represents the user’s belief in the creator.

6. Example

In this section we show how a specific instance of the STR used throughout this paper is represented as instances of the ontology. The instances are represented as bifurcated rectangles where the top part identifies the name of the instance followed by the class it is an instance of (`<instance name> -->> <class name>`). The bottom part contains data properties and object properties for which, for brevity, we do not depict using a link.

Let’s assume that we want to create a STR for the city of Toronto, what we have to do is (Figure 24):

- Create an instance (ex:TO_str) of quantity `gci:Student_teacher_ration_GCI`. This will be starting point of the value for the city of Toronto’s student teacher ratio indicator. Set the `gci:for_city` object property to the URI of the Toronto placename.
- Create an instance of measure `gci:Student_teacher_ratio_measure` (ex:TO_str_m), fill the `om:numeric_value` property with the actual ratio (40 in this example). Link ex:TO_str to ex:TO_str_m using the `om:value` object property.

![Figure 24](image-url)
With this representation, based on the classes these are instances of, we know that `ex:TO_str` represents a Student-Teacher ratio for the Education city service for the city of Toronto. The unit of measure is the ratio of two Population sizes, where the populations are defined by the Student and Teacher classes, respectively, which we have yet to define.

Next we will add two types of provenance (Figure 25):
- The date/time this ratio was created (23 January 2013 at 10am), and
- The Agent who created it (Joe Smith), by instantiating their respective classes.

We then add the validity of the indicator. Since `gci:Student_teacher_ratio_GCI` is a subclass of `kp:KP_prop`, it inherits the `kp:assigned_certainty_degree` data property which we set to 1, i.e., the creator believes the value of the indicator is true.

Based on the above, we know that the source of the indicator was Joe Smith, which he created on January 23rd, 2013 at 10am.

Lastly (Figure 26), we add the degree we trust Joe Smith by doing the following:
- Adding the trustor, Mark Fox, and the degree to which he trusts Joe Smith by instantiating the trust in belief class (`tr:Trust_b`).
- Adding the trusted certainty degree to the Student Teacher ratio.
With this additional information, we know that although Joe Smith believes the STR to be correct, Mark Fox assigns a trusted certainty degree of 0.2 because he does not trust what Joe Smith believes.

The example to this point shows how a the single number that represents the student teacher ration is represented using the OM ontology, along with the meta information representing provenance, validity and trust. If the supporting information is available, we can extend this example to represent what data was used to derive the STR.

Figure 27 depicts how the denominator of the STR is represented. ex:TO_tpopsize is an instance of gci:Teacher_population_size with the value specified by the om:value property linking it to a measure ex:TO_tps_m, which in turn specifies the teacher population size to be 1 kilopcs. The teacher population size is the cardinality of the population ex:TO_tpop linked to by gci:cardinality. This population is located in Toronto, and its membership is defined by the class of teachers who teach fulltime in primary school (this class definition has been abbreviated).
The numerator, i.e., the number of students, is defined similarly. Where they differ is in the definition of population membership, namely the definition of students and teachers. In order to precisely define a student and a teacher, we need an Education Ontology that covers the main points raised in the ISO 37120 definition, such as, primary vs. secondary school, administrative vs. teaching staff, school age students, cohorts, etc. An Education Ontology along with the complete definitions of the ISO37120 educational indicators can be found in Fox (2014).

7. Consistency

Given an indicator definition and indicator data provided by a city in the form of instances of the GCI ontology, it is now possible to automatically detect inconsistencies in the data using a set of consistency rules (axioms). These rules make sure the various parts of an indicator’s instance data refer to the same places, have the same units, etc. They are obvious and simple extensions to the ontology, but necessary in that they can detect errors that commonly occur in datasets.

In the following we informally describe each rule. Each rule is implemented in prolog. The prolog implementation is available – see the Appendix.

7.1. Placename Rules

The purpose of these rules is to check that the City associated with the STR is consistent with the cities associated with each of the Teacher and Student populations. We want to assure that they are referring to and measuring the populations for the same geographic area.
Rule G1: The city for the STR being measured is the same as the cities where its numerator and denominator are measured.

The city for the STR is defined by its `gci:for_city` property. The placename for the city must match the placename specified in the `gci:located_in` property attached to the `gs:Population` that is linked to the `gci:Population_size` class via a `gci:cardinality_of`. See Figure 28.

![Figure 28](image)

7.2. Measurement Rules

These rules define the consistency of measurements used in a STR.

Rule M1: The numerator and denominator of a `gci:Student_teacher_ratio_GCI` are the correct type.

Rule M1 verifies that the numerator and denominator are of the types specified by the definition of the `gci:Student_teacher_ratio_GCI`, namely that the numerator is a `gci:Student_population_size` and the denominator is a `gci:Teacher_population_size`.
Rule M2: The numerator and denominator of the gci:Student_teacher_ratio_GCI are consistent with the numerator and denominator of its unit of measure.

Rule M2 verifies that the unit of measurements of the STR’s numerator and denominator, are consistent with the units specified by the gci:Population_ratio_unit. As defined, the gci:Population_ratio_unit's numerator and denominator have to be gci:population_cardinality_unit's. The rule is generalized to apply to any GCI that is a ratio.

Rule M3: If the numerator and denominator of a gci:Student_teacher_ratio_GCI are the same type, then they should have the same unit of measure.

Since the numerator and denominator of the STR are population counts, then Rule M3 verifies that the numerator and denominator are of the same units, e.g., you cannot have gci:Student_population_size measured in gci:kilopcs and gci:Teacher_population_size measured in gci:pcs. The rule is generalized to apply to any GCI that is a ratio.

Rule M4: The units of the actual measurement are the same as defined by GCI it is a measure of.

In the STR case, the unit of measure of the gci:Student_teacher_ratio_GCI and the unit for the gci:Student_teacher_ratio_measure must be the same, namely a gci:Population_ratio_unit.

Rule M5: The value of the gci:Student_teacher_ratio_measure is equal to the value of the gci:Student_teacher_ratio_GCI numerator divided by the denominator.

Though rule M5 is obvious, it is still necessary to check that calculations are performed correctly.

7.3. Statistics Rules
The statistics rules assure that the populations being measured are consistent with the indicator in which they are being used.

Rule S1: The definitions of student and teacher as specified by the gci:Student_teacher_ratio_GCI are the same as used by its numerator and denominator.

This rule checks to see that the gci:Student_population pointed to by the STR’s numerator and the gci:Teacher_population pointed to by the STR’s denominator have
gci:defined_by ranges that are consistent with the STR’s gci:student_def and gci:teacher_def respectively.

7.4. Provenance Rules
Provenance is used to document the participants and the process used to generate an indicator. It is used for forensic purposes such as determining whether the same methods were used to generate different versions of the same indicator for the same city.

Rule P1: Two versions of the same indicator are inconsistent with each other if different methods were used to generate them.

Consider the situation where the same indicator is measured annually. Each version of the indicator is linked to the prior year’s version via pr:wasRevisionOf property. In order to assure that the two versions are comparable, we have to assure that the same methodology was used for each. This is done by comparing the pr:Activity used to generate numerator for each version, and doing the same for the denominator.

Rule P2: Two versions of the same indicator are inconsistent with each other if the cities are not the same.

A difference of cities can arise because the wrong placenames have been used, or in a dynamic placename situation, the city itself has undergone a change, such as a merger, during the last year.

One could imagine a rule that relates the time the indicator was generated, as recorded by its provenance, with its effective period, but its effective period could either be prior to generation or after, depending on policy.

7.5. Validity Rules
The validity rules assure that the time period for which the STR is specified to be valid, is consistent with the data from which it is derived.

Rule V1: The effective time period for which the STR is valid is contained within the effective time periods of its numerator and denominator.

The numerator and denominator of the STR, namely the gci:Student_population_size and gci:Teacher_population_size, must have effective time periods that at least overlap, and the STR’s effective time period must be contained within that overlap.

Rule V2: The kp:assigned_certainty_degree of the STR is less than or equal to the max of the kp:assigned_certainty_degree of its numerator and denominator, and greater than or equal to the min of its numerator and denominator.

The STR is a function of the Student and Teacher population sizes. Hence it’s trust degree cannot be more/less than the max/min of the individual trusts of the measures it depends on.

7.6. Trust Rules
The trust rules assure that the agents in the trust relations are consistent and they refer to the same Entities.
Rule T1: The trustee in a trust relationship is the same as the pr:wasAttributedTo pr:Agent for an indicator.

The STR indicator must be linked to a tr:Trusted_certainty_degree which is in turn linked to a tr:Trust_b (i.e., trust in the belief of an pr:Agent), which in turn points to a tr:trustee pr:Agent, that trustee must also be the pr:Agent that created the indicator (which is pointed to by the pr:wasAttributedTo link of the STR indicator).

Rule T2: The trusted certainty degree of an indicator should have a Trust instance that links to the indicator via the tr:trusted_entity property.

Rule T3: The trusted certainty degree of an indicator is less than or equal to the indicator’s certainty assigned by its creator.

The point here is that the trusted certainty degree cannot be greater than the certainty assigned by the indicator’s creator. It can only be reduced.

8. Evaluation
We approach the evaluation of Global City Indicator Foundation ontology from four perspectives:

1. Is the ontology Competent? In Grüninger & Fox (1995), the requirements of an ontology are defined by a set of competency questions. These questions define how the ontology is to be used by applications. In order for an ontology to be competent with respect to a set of questions, it must be able to correctly deduce answers assuming the model has been instantiated correctly.

2. Is the ontology Consistent? An OWL ontology is inconsistent if it contains a class that cannot possibly have any instances.

3. Is the ontology General? Are the classes general enough to represent other indicators and can it be easily extended where necessary?

4. Do we satisfy the aspects of a good indicator as identified in Hoornweg et al. (2007)?

8.1. Competency
The competence of an ontology is defined by a set of questions the ontology must be able to answer. These questions fall into three categories:

1. Questions that require a simple retrieval of the value of a property. For example, the city of a particular indicator.

2. Questions that require the following of one or more links (properties) in the network. For example, measurement consistency rule M1.

3. Questions that require some type of computation. For example, longitudinal or transversal analysis.

Regarding category 1, it is clear from the representation what data can be directly retrieved. Regarding category 2, the section on consistency defines a set of consistency competency questions in the form of rules. These rules have been implemented and tested, and are available for review (see Appendix). Regarding category 3, our future work will explore the types of analysis questions that need to be answered and any further extensions to the ontologies required.
8.2. Consistency
Each of the ontologies used herein were tested for consistency using RacerPro v2.0. The following table summarizes the ontologies tested and the result:

<table>
<thead>
<tr>
<th>Ontology</th>
<th>URI</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placenames</td>
<td>http://www.geonames.org/ontology/ontology_v3.1.rdf</td>
<td>Consistent</td>
</tr>
<tr>
<td>Measurement</td>
<td>http://www.wurvoc.org/vocabularies/om-1.8/</td>
<td>Consistent</td>
</tr>
<tr>
<td>Statistics</td>
<td>http://ontology.eil.utoronto.ca/govstat.owl</td>
<td>Consistent</td>
</tr>
<tr>
<td>Provenance</td>
<td>http://www.w3.org/ns/prov</td>
<td>Consistent</td>
</tr>
<tr>
<td>Time</td>
<td>http://www.w3.org/2006/time</td>
<td>Consistent</td>
</tr>
<tr>
<td>Validity</td>
<td>http://ontology.eil.utoronto.ca/kp.owl</td>
<td>Consistent</td>
</tr>
<tr>
<td>Trust</td>
<td>http://ontology.eil.utoronto.ca/trust.owl</td>
<td>Consistent</td>
</tr>
<tr>
<td>Global City Indicator</td>
<td>http://ontology.eil.utoronto.ca/GCI-v1.owl</td>
<td>Consistent</td>
</tr>
</tbody>
</table>

8.3. Generality
A major goal of the development of the Global City Indicator ontology for STR is to make it as general as possible so that it can be reused across the remaining indicators. Seven ontology modules were used in the STR example: Placename, Measurement, Statistics, Provenance, Time, Validity and Trust. Some of these modules were externally developed and used without change or extensions, such as Time and Provenance, some were extended significantly, such as Measurement.

The following table lists, as rows, both the city and profile indicators defined in ISO 37120. Columns 3 through 9 are the ontology modules discussed in this paper. Column 10 identifies the additional modules that have to be developed in order to represent the remaining indicators. 17 new modules have been identified:

- Census
- Economy
- Education
- Energy
- Environment
- Geography
- Fire
- Health
- Municipal Finance
- Municipal Governance
- Recreation
- Safety
- Shelter
- Waste
- Telecommunication
- Transportation
- Urban Ecology

An examination of the table shows that all indicators would reuse the 7 modules described in this paper, while at most 2 new modules would have to be added for any one remaining indicator. The total reuse of the 7 modules introduced in this paper is a strong indication of the generality of the ontology.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Economy</td>
<td>5.1 City’s unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Assessed value of commercial and industrial properties as a percentage of total assessed value of all properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3 Percentage of city population living in poverty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4 Percentage of persons in full-time employment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5 Youth unemployment rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.6 Number of businesses per 100,000 population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.7 Number of new patents per 100,000 population per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Education</td>
<td>6.1 Percentage of female school-aged population enrolled in schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2 Percentage of students completing primary education: survival rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3 Percentage of students completing secondary education: survival rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4 Primary education student/teacher ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.5 Percentage of male school-aged population enrolled in schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.6 Percentage of school-aged population enrolled in schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7 Number of higher education degrees per 100,000 population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Energy</td>
<td>7.1 Total residential electrical energy use per capita (kWh/year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2 Percentage of city population with authorized electrical service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3 Energy consumption of public buildings per year (kWh/m2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4 The percentage of total energy derived from renewable sources, as a share of the city’s total energy consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.5 Total electrical energy use per capita (kWh/year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.6 Average number of electrical interruptions per customer per year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.7 Average length of electrical interruptions (in hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Environment</td>
<td>8.1 Fine particulate matter (PM2.5) concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2 Particulate matter (PM10) concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.3 Greenhouse gas emissions measured in tonnes per capita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4 NO2 (nitrogen dioxide) concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.5 SO2 (sulphur dioxide) concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.6 O3 (Ozone) concentration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.7 Noise pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.8 Percentage change in number of native species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Finance</td>
<td>9.1 Debt service ratio (debt service expenditure as a percentage of a municipality’s own-source revenue)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 Capital spending as a percentage of total expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.3 Own-source revenue as a percentage of total revenues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Tax</td>
<td>9.4 Tax collected as a percentage of tax billed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 10. Fire & | 10.1 Number of firefighters per 100 000 population
 | 10.2 Number of fire related deaths per 100 000 population
 | 10.3 Number of natural disaster related deaths per 100 000 population
 | 10.4 Number of volunteer and part-time firefighters per 100 000 population
 | 10.5 Response time for emergency response services from initial call
 | 10.6 Response time for fire department from initial call |
| Emergency | |
| 11. Governance | 11.1 Voter participation in last municipal election
 | 11.2 Women as a percentage of total elected to city-level office
 | 11.3 Percentage of women employed in the city government workforce
 | 11.4 Number of convictions for corruption and/or bribery by city officials per 100 000 population
 | 11.5 Citizens’ representation: number of local officials elected to office per 100 000 population
 | 11.6 Number of registered voters as a percentage of the voting age population |
| 12. Health | 12.1 Average life expectancy
 | 12.2 Number of in-patient hospital beds per 100 000 population
 | 12.3 Number of physicians per 100 000 population
 | 12.4 Under age five mortality per 1 000 live births
 | 12.5 Number of nursing and midwifery personnel per 100 000 population
 | 12.6 Number of mental health practitioners per 100 000 population
 | 12.7 Suicide rate per 100 000 population |
| 13. Recreation | 13.1 Square meters of public indoor recreation space per capita
 | 13.2 Square meters of public outdoor recreation space per capita |
| 14. Safety | 14.1 Number of police officers per 100 000 population
 | 14.2 Number of homicides per 100 000 population
 | 14.3 Crimes against property per 100 000
 | 14.4 Response time for police department from initial call
 | 14.5 Violent crime rate per 100 000 population |
| 15. Shelter | 15.1 Percentage of city population living in slums
 | 15.2 Number of homeless per 100 000 population
 | 15.3 Percentage of households that exist without registered legal titles |
| 16. Solid Waste | 16.1 Percentage of city population with regular solid waste collection
 | 16.2 Total collected municipal solid waste per capita
 | 16.3 Percentage of the city’s solid waste that is recycled
<pre><code> | 16.4 Percentage of the city’s solid waste that is |
</code></pre>
<p>| | |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Indicator</td>
</tr>
<tr>
<td>16.5 Percentage of the city’s solid waste that is disposed of in an incinerator</td>
<td></td>
</tr>
<tr>
<td>16.6 Percentage of the city’s solid waste that is burned openly</td>
<td></td>
</tr>
<tr>
<td>16.7 Percentage of the city’s solid waste that is disposed of in an open dump</td>
<td></td>
</tr>
<tr>
<td>16.8 Percentage of the city’s solid waste that is disposed of by other means</td>
<td></td>
</tr>
<tr>
<td>16.9 Hazardous Waste Generation per capita (tonnes)</td>
<td></td>
</tr>
<tr>
<td>16.10 Percentage of the city’s hazardous waste that is recycled</td>
<td></td>
</tr>
<tr>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>17.1 Number of internet connections per 100 000 population</td>
<td>• Telecommunications</td>
</tr>
<tr>
<td>17.2 Number of cell phone connections per 100 000 population</td>
<td></td>
</tr>
<tr>
<td>17.3 Number of landline phone connections per 100 000 population</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>18.1 Kilometres of high capacity public transport system per 100 000 population</td>
<td>• Transportation</td>
</tr>
<tr>
<td>18.2 Kilometres of light passenger public transport system per 100 000 population</td>
<td></td>
</tr>
<tr>
<td>18.3 Annual number of public transport trips per capita</td>
<td></td>
</tr>
<tr>
<td>18.4 Number of personal automobiles per capita</td>
<td></td>
</tr>
<tr>
<td>18.5 Percentage of commuters using a travel mode to work other than a personal vehicle</td>
<td></td>
</tr>
<tr>
<td>18.6 Number of two-wheel motorized vehicles per capita</td>
<td></td>
</tr>
<tr>
<td>18.7 Kilometres of bicycle paths and lanes per 100 000 population</td>
<td></td>
</tr>
<tr>
<td>18.8 Transportation fatalities per 100 000 population</td>
<td></td>
</tr>
<tr>
<td>18.9 Commercial air connectivity (number of non-stop commercial air destinations)</td>
<td></td>
</tr>
<tr>
<td>Urban Planning</td>
<td></td>
</tr>
<tr>
<td>19.1 Green area (hectares) per 100 000 population</td>
<td>• Urban Ecology</td>
</tr>
<tr>
<td>19.2 Annual number of trees planted per 100 000 population</td>
<td></td>
</tr>
<tr>
<td>19.3 Areal size of informal settlements as a percentage of city area</td>
<td></td>
</tr>
<tr>
<td>19.4 Jobs/housing ratio</td>
<td></td>
</tr>
<tr>
<td>Waste Water</td>
<td></td>
</tr>
<tr>
<td>20.1 Percentage of city population served by wastewater collection</td>
<td>• Waste</td>
</tr>
<tr>
<td>20.2 Percentage of the city’s wastewater that has received no treatment</td>
<td></td>
</tr>
<tr>
<td>20.3 Percentage of the city’s wastewater receiving primary treatment</td>
<td></td>
</tr>
<tr>
<td>20.4 Percentage of the city’s wastewater receiving secondary treatment</td>
<td></td>
</tr>
<tr>
<td>20.5 Percentage of the city’s wastewater receiving tertiary treatment</td>
<td></td>
</tr>
<tr>
<td>Water & Sanitation</td>
<td></td>
</tr>
<tr>
<td>21.1 Percentage of city population with potable water supply service</td>
<td>• Water</td>
</tr>
<tr>
<td>21.2 Percentage of city population with sustainable</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>access to an improved water source</td>
</tr>
<tr>
<td></td>
<td>21.3 Percentage of population with access to improved sanitation</td>
</tr>
<tr>
<td></td>
<td>21.4 Total domestic water consumption per capita (litres/day)</td>
</tr>
<tr>
<td></td>
<td>21.5 Total water consumption per capita (litres/day)</td>
</tr>
<tr>
<td></td>
<td>21.6 Average annual hours of water service interruption per household</td>
</tr>
<tr>
<td></td>
<td>21.7 Percentage of water loss (unaccounted for water)</td>
</tr>
<tr>
<td>Profile Indicators</td>
<td></td>
</tr>
<tr>
<td>People</td>
<td>Total city population</td>
</tr>
<tr>
<td></td>
<td>Population density (per sq. kilometer)</td>
</tr>
<tr>
<td></td>
<td>% of country’s population</td>
</tr>
<tr>
<td></td>
<td>% of population that are children (0-14)</td>
</tr>
<tr>
<td></td>
<td>% of population that are youth (15-24)</td>
</tr>
<tr>
<td></td>
<td>% of population that are adult (25-64)</td>
</tr>
<tr>
<td></td>
<td>% of population that are senior citizens (65+)</td>
</tr>
<tr>
<td></td>
<td>Male to Female ratio (# of males per 100 females)</td>
</tr>
<tr>
<td></td>
<td>Annual population change</td>
</tr>
<tr>
<td></td>
<td>Population Dependency Ratio</td>
</tr>
<tr>
<td></td>
<td>% of population that are foreign born</td>
</tr>
<tr>
<td></td>
<td>% of pop. that are new immigrants</td>
</tr>
<tr>
<td></td>
<td>% of residents who are not citizens</td>
</tr>
<tr>
<td>Housing</td>
<td>Total number of households</td>
</tr>
<tr>
<td></td>
<td>Total # occupied dwelling units (owned & rented)</td>
</tr>
<tr>
<td></td>
<td>Persons per unit</td>
</tr>
<tr>
<td></td>
<td>Dwelling density [per km2]</td>
</tr>
<tr>
<td>Economy</td>
<td>Average household income (USD)</td>
</tr>
<tr>
<td></td>
<td>Annual inflation rate based on average of last 5 years</td>
</tr>
<tr>
<td></td>
<td>Cost of living</td>
</tr>
<tr>
<td></td>
<td>Income distribution (Gini Coefficient)</td>
</tr>
<tr>
<td></td>
<td>Country’s GDP (USD)</td>
</tr>
<tr>
<td></td>
<td>Country’s GDP per capita (USD)</td>
</tr>
<tr>
<td></td>
<td>City Product per capita (USD)</td>
</tr>
<tr>
<td></td>
<td>City Product as a percentage of Country’s GDP</td>
</tr>
<tr>
<td></td>
<td>Employment percentage change based on the last 5 years</td>
</tr>
<tr>
<td>Government</td>
<td>Type of government (e.g. Local, Regional, County)</td>
</tr>
<tr>
<td></td>
<td>Gross Operating Budget (US$)</td>
</tr>
<tr>
<td></td>
<td>Gross Operating Budget per capita (US$)</td>
</tr>
<tr>
<td></td>
<td>Gross Capital Budget (US$)</td>
</tr>
<tr>
<td></td>
<td>Gross Capital Budget per capita (US$)</td>
</tr>
<tr>
<td>Geography and Climate</td>
<td>Region</td>
</tr>
<tr>
<td></td>
<td>Climate type</td>
</tr>
<tr>
<td></td>
<td>Land Area (sq. kilometers)</td>
</tr>
<tr>
<td></td>
<td>% of non-residential area (sq. kilometers)</td>
</tr>
<tr>
<td></td>
<td># of native species</td>
</tr>
<tr>
<td></td>
<td>Average annual temperature [Celsius]</td>
</tr>
<tr>
<td></td>
<td>Average annual rainfall [mm]</td>
</tr>
<tr>
<td></td>
<td>Average annual snowfall [cm]</td>
</tr>
</tbody>
</table>
8.4. Aspects of a Good Indicator

In Section 3, we discussed the aspects of a good city indicator defined by Hoornweg et al. (2007). In this section we revisit these aspects from the perspective of what and how the Global City Indicator Ontology achieves these aspects.

- **Objective**: clear, well defined, precise and unambiguous, simple to understand.

 The ontology provides a clear, precise representation of an indicator that is grounded in more foundational ontologies such as measurement theory, statistics, etc. This reduces, if not removes in most cases, ambiguity in the interpretation of the indicator.

- **Measurable and replicable**: easily quantifiable, systematically observable.

 This aspect is not addressed by the ontology.

- **Auditable**: valid, subject to third-party verification, quality controlled data (legitimacy across users).

 With the inclusion of provenance, validity and trust information in the ontology, the ability to audit the information is greatly enhanced. Add to it the more detailed information on the populations from which the data is drawn from, the quality of the data can be further verified.

- **Statistically representative** at the city level.

 While this aspect is not addressed by the ontology, the detailed representation of the place and populations sampled enables the audit function determine whether the information is statistically representative.

- **Comparable/ Standardized** longitudinally (over time) and transversally (across cities).

 The incorporation of dynamic placenames, measurement, time, statistics, and provenance makes it possible to perform longitudinal and transversal analysis and to verify that the data being compared is consistent with each other.

- **Flexible**: can accommodate continuous improvements to what is measured and how. Have a formal mechanism for all cities and interested parties to comment on.

 The ontology can be easily extended to include other measures as demonstrated by the generality of the underlying modules (i.e., placenames, provenance, measurement, etc.).

- **Interrelated**: indicators should be constructed in an interconnected fashion (social, environmental and economics).

 The Semantic Web’s network representation is fundamentally an integrated representation, and enables the integration of indicators and the information they are
• **Consistent and sustainable over time:** *frequently presented and independent of external capacity and funding support.*

An important aspect of publishing indicators and their supporting data on the Semantic Web is the universal access it provides and its availability over time.

9. **Conclusions**

Industrial Engineering and Management Science both share the view that you cannot manage what you do not measure. Enhancing the quality and efficiency of the operations and services of a city depends upon the ability to measure them. The development of city metrics faces many challenges. The first challenge is the selection and definition of the metrics. The second challenge is the adoption and use of these metrics by a large number of cities. These first two challenges have been the focus of the Global City Indicator Facility for the last five years and has resulted in the creation of ISO 37120 and the adoption of the standard by over 250 cities worldwide. The third challenge is to represent the indicators so that they can be published, linked, merged, mashed, and analyzed based on the principles of the Semantic Web. This work addresses this third challenge. It selects, merges and extends a number of ontologies in order to provide a semantic basis for the Global City Indicators, while at the same time making it possible to publish the data for use across the Semantic Web.

There are two directions that our current research is heading. The first direction is to complete the Global City Indicator Ontology to span the entire set of ISO37120 Indicators. This will require additional ontologies, such as census, environment, and city finances to be added. The second direction is to extend the competency of the ontology to support automated longitudinal and transversal analyses of city data.

10. **Acknowledgements**

I would like to thank Hajo Rijgersberg for his feedback on the use of the OM Ontology, and Patricia McCarney for her feedback on Global City Indicators.

"Global City Indicators©" is a term created by the Global City Indicators Facility in 2010 at the University of Toronto. All rights apply. GCI refers to the indicators created by the GCIF to establish a global standard of over 100 city indicators with a standardized definition and methodology, tested with over 250 cities globally since 2010. The GCIs have been approved and published as ISO 37120.

11. **References**

Global City Indicators Facility (2010b). “Global City Indicators©: Definitions and Methodologies” September 2010, GCIF, University of Toronto.

Workshop.

Cambridge University Press.

McCarney, P. L., (2012a), “Global City Indicators (GCI)©: Standardization of City Services and Quality of Life Indicators, Methodologies and Definitions”, Draft submission to the International Organization for Standardization (ISO) for the standardization of the Global City Indicators and corresponding definitions and methodologies entitled: Global City Indicators (GCI): Standardization of City Services and Quality of Life Indicators, Methodologies and Definitions©.

© 2017 Mark S. Fox

Global City Indicator Ontology

12. **Appendix**

The Global City Indicator Foundation ontology can be found in: http://ontology.eil.utoronto.ca/GCI/Foundation/GCI-Foundation.owl.

The consistency axioms implemented in SWI-Prolog can be found in: http://ontology.eil.utoronto.ca/GCI/GCI-axioms.pl along with supporting axioms for time and OWL.

The example used in this paper is implemented in SWI-Prolog and can be found in: http://ontology.eil.utoronto.ca/GCI/GCI-example.pl.

The URIs for the ISO37120 indicators can be found in: http://ontology.eil.utoronto.ca/ISO37120.owl