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Abstract. As the amount of information on the web increases, so does
the importance of ontologies available to capture it. This work is con-
cerned with supporting a correct and meaningful representation of activ-
ities on the Semantic Web, with the potential to support tasks such as
activity recognition and reasoning about causation. This requires an on-
tology capable of more than simply documenting and annotating individ-
ual activity occurrences; definitions of activity specifications are needed.
Current representations of activities in OWL do not meet the basic re-
quirements for activity specifications. Detailed definitions of an activity’s
preconditions and e↵ects are lacking, in particular with respect to a con-
sideration of change over time. This paper leverages existing work to fill
this void with an ontology design pattern for activity specifications in
OWL.

1 Introduction

The need to capture the semantics of activities is a common requirement in
various domains. In our case, this requirement arose in the development of an
ontology for urban systems. The ontology is part of a larger project of urban
informatics, iCity [12], and was required to capture both the static and dynamic
aspects of an urban system. The project requires the representation of various
activities that occur in the urban environment: from population changes (such
as deaths, births, and marriages), to everyday travel activities (such as driv-
ing, taking transit, and parking). Beyond representing individual occurrences,
specifications of these activities are required.

Over time there may be any number of occurrences of an activity and an ac-
tivity specification provides a useful way to describe these occurrences in general.
It is a means of improving the understanding of the domain, as well as assessing
the accuracy or completeness of some information (e.g. a model or other imple-
mentation from the various research e↵orts in iCity). Certainly, there may be
many and varied concepts involved in activity specifications for di↵erent applica-
tions. There may be requirements to capture various types of resources, resource
consumption, activity participation, and so on. This work focuses solely on the
requirements for a fundamental representation of activity preconditions and ef-
fects. Specifically, what state(s) must hold in order for an activity to occur,
and what state(s) are caused to be true when an activity occurs. A definition
of preconditions and e↵ects in an activity specification enriches the knowledge
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representation and creates the potential to reason about cause and e↵ect. These
preconditions and e↵ects should be defined in other ontology(s), thereby cap-
turing a meaningful connection, and supporting a deeper reasoning about the
activities and the rest of the domain. This enables questions such as: What class
of objects could satisfy the precondition for some activity? What activity could
have caused a change in some object? Will the precondition for this activity still
be satisfied if something in the domain changes?

Due to the prevalence of the Web Ontology Language (OWL) and the impli-
cations this has for shareability through the Semantic Web, the iCity project has
committed to the use of OWL for the development of the ontology to represent
its knowledge base. One objective of the project is to facilitate the distribution
of its various research e↵orts with other groups. OWL is a desirable implementa-
tion language in this case because it provides a widely accepted, formal language
to support this. Further, due to its role as the de facto standard language for
the Semantic Web, vast amounts of semantically-annotated data are available
in OWL. This makes it a compelling representation language choice in order
to easily access and integrate this information with project data. While it may
be necessary to develop extensions in other languages to support more complex
reasoning tasks, the iCity project requires that data be captured and encoded
in OWL.

Unfortunately, existing OWL ontologies are lacking with respect to the basic
requirements for an activity specification. This work presents the Activity Spec-
ification1 content ontology design pattern [4] to fill this gap in Semantic Web
resources. In the section that follows, we review existing approaches to defining
preconditions and e↵ects in OWL and explain why they are not suitable solu-
tions. Then, informed by earlier work on representations of fluents and activities,
we propose an ontology design pattern capable of satisfying this basic set of re-
quirements for activity specifications. It is applied with minimal reliance on the
underlying activity ontology and is described such that this novel approach may
easily be applied to other activity or event ontologies to obtain a similar solution.

2 Related Work

There are many OWL ontologies that in some way address the concept of activ-
ities. Event ontologies such as The Event Ontology [18, 14] focus only on occur-
rences, and so do not completely capture an activity specification. While F-model
[17] does include the concepts of cause and e↵ect, they are only defined at the
occurrence level and specified as other events rather than states. Other OWL
ontologies that do include the concept of activities and their preconditions and
e↵ects, such as the activity ontology by Riboni and Bettini[15] and the activity
pattern presented by Abdalla and colleagues [1], provide no detail on the se-
mantics of preconditions and e↵ects, nor do they o↵er any guidance for how the
states themselves should be formalized.

1 http://ontologydesignpatterns.org/wiki/Submissions:ActivitySpecification



Although it is not discussed in the documentation, DUL+dns [3] does support
a means of defining preconditions and e↵ects as states (Situations). However, this
ontology requires the use of reification for the N-ary relations approach to capture
changes in states. The reader is directed to [13] for more detail on this approach in
OWL. There are known issues that arise with reification (discussed in [19, 11], for
example). In particular, it imposes limitations on reasoning, complicates reuse,
and requires the introduction of additional terms. These issues are especially
problematic for the iCity project and likely many other applications that aim to
reuse existing foundational and domain ontologies (and vocabularies) wherever
possible.

3 The Solution: A Pattern for Activity Specification

The proposed solution adopts a view of causality similar to the Event Calculus
[10], employing the concept of manifestations to describe the states (fluents).
The representation of activity specifications is based on the activity clusters
introduced by Fox, Sathi, and colleagues [2, 16]. A precursor to the TOVE [6]
and PSL [5] activity ontologies, an activity cluster provides a basic structure
for representing activity specifications. Illustrated in Figure 1, it consists of an
activity connected to an enabling and caused state, each of which may be a
state tree that defines complex states via decomposition into conjunctions and
disjunctions of states. It is important to clarify that in this work, an activity is

Fig. 1. A generic activity cluster, as represented in earlier work by Fox, Sathi, and
colleagues [2, 16].

interpreted as a class of occurrences. There are arguments for and against this
approach, as compared to a more traditional AI approach where activities are
separate entities related to occurrences via an occurrence of relation, however
this debate is outside of the scope of this work2. Before presenting the pattern
for activity specifications, the concept of a manifestation is introduced to provide
the required background. Then, a basic activity ontology is introduced and we
describe the intuition of our solution: interpret manifestations as states, and de-
fine preconditions and e↵ects using these states to achieve the required definition
of an activity specification. Finally, we present the pattern as a whole.

2 It is worthwhile to note that a similar solution can be applied for this alternate
representation as well.



3.1 Manifestations

The representation of fluents in OWL via a 4-dimensionalist (4D) view was orig-
inally proposed by Welty, Fikes and Makarios [19]. Rather than relations being
fluent and varying between entities as a function of time, in this approach rela-
tions simply hold (or do not hold) between temporal parts of the entities. This
4D view was later reinterpreted by Krieger [11], o↵ering several practical ad-
vantages over the original approach. In particular, it eliminated the need for
re-writing atemporal domain ontologies for reuse in a 4D representation. This
reinterpretation has been implemented for the iCity project; the Ontology of
Change3 introduces two key classes to represent a concept that is subject to
change: Manifestation and TimeVaryingEntity. The TimeVaryingEntity class cor-
responds to the invariant part of the concept. It is defined by properties that
do not change over time. As per Krieger [11], TimeVaryingEntities are viewed
as perdurants (things that occur over time, i.e. processes). A TimeVaryingEn-
tity has Manifestations that demonstrate its changing properties over time, and
these Manifestations exist at some Instant (or possibly Interval) in time. In ad-
dition to the manifestationOf relationship between a TimeVaryingEntity and a
Manifestation, the ontology introduces the sameTimeVaryingEntity property for a
Manifestation, to capture other Manifestations of the same TimeVaryingEntity.

The Activity Specification design pattern requires that the domain of interest
is defined to capture change via this approach. To implement this representation
in a particular domain requires that the changing concept (e.g. the Vehicle class)
is defined as a subclass of Manifestation, and its invariant (perdurant) part
is introduced as a subclass of TimeVaryingEntity. This process turns out to
be relatively straightforward and has been submitted as an Ontology Design
Pattern4 as described in related work on a logical design pattern for change [9].

3.2 Activity and Time Ontologies

In this pattern an intentionally weak commitment is made in the definition of
an Activity in order to focus on the representation of preconditions and e↵ects
and ensure its relevance to a wider audience. Should the pattern be used as-
is, it is likely that some desired semantics may be found lacking. In particular,
this simplistic representation does not account for composition of, or ordering
over activities. The resulting ontology can easily be extended with a stronger
definition of an Activity. Likewise, the pattern can easily be applied to other
activity or event ontologies. It assumes only that an Activity is something that
occurs over some point in time:
Activity v 9=1 occursAt.Interval
It is also useful to include beginOf and endOf properties for an Activity to
describe when it starts and ends. Assuming the use of a time ontology that
defines a couple of basic relations regarding the start and end of an Interval,

3 Available at: https://w3id.org/icity/iCity-Change
4 http://ontologydesignpatterns.org/wiki/Submissions:Change of Time Varying Entities



these properties are easily definable through object property chaining with the
occursAt property as follows:
occursAt o hasBeginning ! beginOf
occursAt o hasEnd ! endOf
Our implementation employs the OWL-Time ontology [7], however this is not a
requirement of the solution. The pattern is relatively agnostic as to what time
ontology is used; it requires only some notion of time points and intervals such
that we can refer to when an activity is occurring, as well as when it begins and
ends.

3.3 Manifestations as States in an Activity Specification

Observe that a Manifestation corresponds to (part of) a state of the world. Thus,
similar in intuition to the Event Calculus approach to representing causality with
fluents [10], manifestations may be interpreted as states that describe the pre-
conditions and e↵ects of activities. It is interesting to note that according to this
view, both activities and their preconditions and e↵ects are perdurants. How-
ever, in this pattern there is a distinction between Activities and States because
Activities, (as opposed to TimeVaryingEntities) do not have manifestations5.

Consider the activity, DriveToWork. A precondition of this activity might
be that there is a vehicle with some gas. Rather than define the precondition
relationship between individuals, the DriveToWork Activity can be defined by
describing the class of manifestations that satisfies the precondition of a Vehicle
with gas6:
DriveToWork v 9 hasPrecondition.(Vehicle u 8 hasGas.(Gas u hasVolume > 0)
Admittedly, this is a very naive representation. More accurately, the volume of
gas would required to be not only greater than zero, but some minimum value,
(dependent on the distance to work). This has been simplified for presentation
purposes. Complex states and the relationships between them will be addressed
subsequently.

E↵ects of activities can be defined similarly, as classes of Manifestations.
The corresponding ontology representation for this example is shown in Figure
2. This approach captures the semantics of the entity(s) that is a precondition
or e↵ect of the activity (in this case, the definition of Vehicle, which might be
imported from some other ontology), while also accounting for its temporal,
variable nature. In other words, the same vehicle that satisfies that precondition
at some time t1, may no longer satisfy the precondition at a later time, t2.

Complex States The activity of driving to work may require not only a car
that has gas, but also that there is a person available to drive it. An activity

5 While this is not explicitly precluded in the axioms, we do not find it useful or
necessary to require it.

6 Note that the examples presented here assume the existence of the relevant domain
ontology(s), using the representation of change described previously; in this case one
that defines Vehicles, including properties and concepts such as its volume of gas.



Fig. 2. A simple example illustrating the use of the Manifestation class to represent a
State in an activity specification.

specification must be able to capture such instances where the precondition or
e↵ect is a complex state, involving multiple manifestations. To address this, the
state tree approach used in the specification of activity clusters [16] is adopted.
Two subclasses of State are introduced: a non-terminal and a terminal state. A
TerminalState has no “children” (i.e. is not a complex state), and therefore refers
directly to a class of manifestations. In fact, TerminalState is the subclass of
Manifestations that are a precondition or e↵ect of some Activity.

On the other hand, a NonTerminal state has child states (defined with the
hasDecomp property), which may themselves be Terminal or NonTerminal. A
NonTerminal state may be conjunctive or disjunctive. Naturally, a ConjunctiveS-
tate is defined by the conjunction of its child states, whereas a DisjunctiveState
is defined by the disjunction of its child states. The resulting state tree may be
multiple levels deep, comprised of a combination of manifestations that form the
Terminal States (i.e., the leaves of the state tree).

3.4 The Representation

The resulting ontology design pattern, illustrated in Figure 3, defines the fol-
lowing key classes for an activity specification: Activity, State, TerminalState,
NonTerminalState, ConjunctiveState, and DisjunctiveState. It provides the in-
frastructure necessary to more accurately define the preconditions and e↵ects
of an activity, and may be implemented with alternate theories of activity and
time. For an example of a complete implementation of the pattern, the reader is
referred to the iCity Activity Ontology7. The representation of an activity spec-
ification focuses on capturing preconditions and e↵ects at the general, activity
level. In order to define the semantics of these conditions we must consider the
implications for individual occurrences and states – in particular, the relation-
ship between when an activity occurs and when a state is true. The status of a

7 Available at: https://w3id.org/icity/iCity-Activity



Fig. 3. Depiction of the Activity Specification design pattern.

state is further defined in the ontology via the object property achievedAt. The
precondition of an activity must be true (achievedAt) when the activity begins:
inverse(hasPrecondition) o beginOf ! achievedAt
Similarly, e↵ect must be true (achievedAt) when the activity ends:
inverse(hasE↵ect) o endOf ! achievedAt

Both Manifestations and States have a temporal projection. The ontology
should also describe the relationship between the status of a state and the exis-
tence of its related manifestation(s). This requires the introduction of specialized
sub-properties of achievedAt for each type of State.

Terminal states are the simplest sort of State. A specialization of the achieve-
dAt property for terminal states, terminalAchievedAt, can be defined as a sub-
property of existsAt, (the property that defines the temporal extent of a Mani-
festation).
terminalAchievedAt subPropertyOf existsAt

Conjunctive and disjunctive state do have substates. A ConjunctiveState is
achieved only when all of its decomposed states are achieved. A DisjunctiveState
is achieved at some time if any of its decomposed states is achieved. This intended
semantics for conjunctive and disjunctive states is illustrated in Figure 4, where
t3 and t4 depict the intervals at which the non-terminal state s is achieved, as a
conjunctive or disjunctive state, respectively. Ideally the conjunctiveAchievedAt
and disjunctiveAchievedAt properties would be defined as follows:

(8s, t)conjunctiveAchievedAt(s, t) () (8s1, t1)hasDecomp(s, s1)

^ achievedAt(s1, t1) ^ during(t, t1)

(8s, t)disjunctiveAchievedAt(s, t) () (9s1, t1)hasDecomp(s, s1)

^ achievedAt(s1, t1) ^ during(t, t1)



S

S1 S2
achievedAt(s1,t1)

achievedAt(s2,t2)

conjunctiveAchievedAt(s,t3)

hasDecomp(s,s1) hasDecomp(s,s2)

S

S1 S2
achievedAt(s1,t1)

achievedAt(s2,t2)

disjunctiveAchievedAt(s,t4)

hasDecomp(s,s1) hasDecomp(s,s2)

Fig. 4. A simple example of conjunctive and disjunctive states and their associated
achievedAt properties

However, these axioms are beyond the expressive capabilities of OWL. Instead,
this semantics is approximated for conjunctive states with the use of object prop-
erty chaining:
inverse(hasDecomp) o conjunctiveAchievedAt o during ! achievedAt
A similar axiom for disjunctiveAchievedAt is conceivable, though not express-
ible in OWL as it results in a cyclic dependency with the achievedAt property.
Collectively, the pattern for activity specifications is shown in Figure 5.

Relationships Between States In addition to the composition of states and
their status, there may exist relationships between the states in an activity spec-
ification. A simple example of this can be seen by considering the additional
precondition of a driver for the DriveToWork activity. Adding this precondition
results in a complex (conjunctive) state; the resulting specification is illustrated
as an activity cluster, and using the Activity Specification design pattern in Fig-
ures 6,7 (respectively). Based on the design pattern, it is defined as follows:
DriveToWork v 8 hasPrecondition.DTWPre
DTWPre v ConjunctiveState
DTWPre v 9 hasDecomp.Person
DTWPre v 9 hasDecomp.(Vehicle u 8 hasGas.(Gas u hasVolume< 0))
These axioms provide a correct representation, however they omit a stronger
relationship that is likely present between the Person and Vehicle states: they
should share the same location before the activity can occur. Similarly, there
may be relationships between the precondition and e↵ect states of an activity.
One e↵ect of the DriveToWork activity might be a state where a Vehicle is
at some particular location (work). Intuitively, this is the same vehicle as that
which satisfied the precondition, however the same vehicle at di↵erent points
in time corresponds to a di↵erent Vehicle that is a Manifestation of the same
TimeVaryingEntity. This common relationship between preconditions and e↵ects
can be expressed using the sameTimeVaryingEntity property described earlier.

Within OWL these relationships may be expressed at the individual level.
Additionally, some relationships are expressible when more precise classes of ac-
tivities are defined. For example, the activity Alice drives to work allows for the



Activity v 8hasPrecondition.State
Activity v 8hasE↵ect.State
Activity v 8occursAt.Interval

State v 8achievedAt.TemporalEntity

NonTerminalState v State

TerminalState v State

TerminalState v Manifestation

ConjunctiveState v NonTerminalState

DisjunctiveState v NonTerminalState

TerminalState v ¬9hasDecomp.State

NonTerminalState v 8hasDecomp.State

NonTerminalState v� 2hasDecomp.State

inverse(hasPrecondition) o beginOf ! achievedAt

inverse(hasE↵ect) o endOf ! achievedAt

terminalAchievedAt ! existsAt

inverse(hasDecomp) o conjunctiveAchievedAt o during ! achievedAt

conjunctiveAchievedAt ! achievedAt

disjunctiveAchievedAt ! achievedAt

terminalAchievedAt ! achievedAt

Fig. 5. The Activity Specification Content Design Pattern

definition of a complex precondition with a vehicle at Alice’s home, and Alice
at her home; the shared location is defined with respect to the activity. A more
general axiomatization of these inter-state relationships is beyond the represen-
tation abilities of OWL, thus while the representation is capable of capturing
activity specifications, there is limit with respect to the type of reasoning that
may be supported.

It is not surprising that enforcing a more advanced semantics is not possible
in OWL, nor should it be a source of concern. In our experience, it is common
practice to define the necessary concepts in a “neat” way on the Semantic Web,
while reasoning is implemented in a “scru↵y” way with external applications
supplementing the required semantics. Should more advanced reasoning be re-
quired, it is possible to define these relationships between states outside of the
OWL representation. For example, in SWRL [8]:
DriveToWork(?a), hasPrecondition(?a,?s1), hasDecomp(?s1,?v), Vehicle(?v),
hasE↵ect(?a,?s2), Vehicle(?s2) ! sameTimeVaryingEntity(?s2,?v)



Fig. 6. An example representation of a complex precondition as an activity cluster.

Fig. 7. An example representation of a complex precondition captured with the Activ-
ity Specification pattern.



Likewise, stronger definitions of the precondition, e↵ect, and achievedAt prop-
erties are possible if we consider extensions beyond OWL. That being said,
limitations in OWL expressivity should not be a deterrent from developing a
representation capable of approximating the semantics and capturing the rele-
vant data. The Activity Specification pattern provides a meaningful connection
between the activity and the associated domain(s), in a way that captures causal-
ity and change over time. An OWL representation is critical to enable Semantic
Web support for sharing, integrating, and linking the data. Should the OWL
representation be unable to support all of the key reasoning tasks, this can be
addressed at alternate levels of implementation (scru↵y, or otherwise).

4 Conclusion

This work presents a novel approach to capturing the semantics of preconditions
and e↵ects in OWL based on existing solutions for the representation of fluents.
The proposed ontology design pattern adopts an approach that supports an ease
of reuse of existing domain ontologies that is not possible with reification. Fur-
ther, it is specified with a weak semantics of Activities that may be easily reused
and strengthened as required (e.g. for complex activities), or integrated with
existing Activity ontologies. This work provides a foundation for the adoption
of a meaningful representation of activity specifications on the Semantic Web.
Future work should look toward capturing other aspects such as resource con-
sumption and participation. The notion of relative strength or priority between
alternative preconditions and e↵ects would also be an interesting extension.

While not the focus of this pattern, an additional consequence of this ap-
proach is the ability to easily develop more complex representations by extending
the representations of the Activity and State objects. For example, spatial infor-
mation is a particularly common requirement: spatial knowledge about a precon-
dition or e↵ect may be defined by capturing the location of the Manifestation.
Other possible extensions are concepts of participation, activity composition,
and specializations of the precondition and e↵ect properties.

As noted, this work is motivated by a project on urban informatics [12]. We
gratefully acknowledge support provided by the Ontario Ministry of Research
and Innovation through the ORF-RE program.
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18. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and
use of the simple event model (sem). Web Semantics: Science, Services and Agents
on the World Wide Web 9(2), 128–136 (2011)

19. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In: Formal
Ontology in Information Systems (FOIS). vol. 150, pp. 226–236 (2006)


