
A Logical Design Pattern for Representing
Change Over Time in OWL

Megan Katsumi and Mark Fox

University of Toronto katsumi@mie.utoronto.ca

msf@mie.utoronto.ca

Abstract. While there exist OWL ontologies that capture events and
acknowledge the dynamic nature of certain domains, the possibility of
change is neglected in many domain-specific ontologies. Solutions to the
representation of fluents have been proposed, however there exists no
guidance for the average Semantic Web practitioner on how to incorpo-
rate these solutions into existing ontologies or implement them in the
development of new ontologies. This paper addresses a gap in the lit-
erature on the representation of change over time in OWL through the
introduction of a logical design pattern for representing change. The aim
of this work is to make the representation of change more accessible to
a broad audience of Semantic Web practitioners.

1 Introduction

This work is motivated by a project on urban informatics, iCity [11], in which

our role is to develop an ontology capable of representing the urban system –

both the information that is collected, as well as information that is simulated

and analyzed by various research groups. Owing to its popularity, tool support,

and role as the de facto standard for the Semantic Web, OWL2 was selected

as the representation language for the formalization of the ontology. To capture

the urban domain, the notion of change over time is a critical requirement: the

population, family and household structures, transportation networks, and the

locations of individual transportation vehicles (buses, household vehicles, and so

on) are all subject to change.

Change over time plays a role in many domains, and is by no means a new

research topic. In fact, several approaches for capturing change in OWL have

been proposed [15, 12, 9]. Despite these solutions, we have found that Semantic

Web practitioners currently lack clear and precise methods for how to apply

these approaches to capture change at a domain level, whether reusing an atem-

poral ontology or developing an ontology from scratch. The work presented here

aims to fill this gap by providing a straightforward, logical design pattern for

implementing a representation of change in any given domain. In particular, we

provide consideration for the reuse of atemporal ontologies, as our experience

has led us to believe that this is an important design task.

Katsumi, M., and Fox, M.S., (2017), "A Logical Design Pattern for Representing Change Over Time in OWL", Proceedings of the Workshop on Ontology Patterns, Vienna.

2 Background

The task of representing change over time in OWL has been addressed by way

of the so-called N-ary relations approach [12], and the 4D approach introduced

by Welty, Fikes, and Makarios [15].

In a traditional 3D approach we might have a fluent that describes the posi-

tion of two blocks at some point in time: on(A,B,t), to describe that A is “on”

B at time t. In the N-ary relations approach, the relation “on” becomes a thing

in the domain, and we introduce a class to capture instances of the relation:

onClass(on1). Three new relations are now required to capture the relationship

between A,B,t, and onClass; for example: topOf(A,on1), bottomOf(B,on1), and
holdsFor(on1,t). A comparison of the approaches is illustrated in Figure 1.

In an empirical study comparing representations of temporal information by

Scheuermann and colleagues [13], the authors concluded that the N-ary relations

representation was the more intuitive and most widely chosen representation ap-

proach to model a particular statement. However, it is our view that the repre-

sentations resulting from the N-ary approach may be intuitive or not, depending

on the fluent they are capturing as well as the skill of the designer. It is worth

noting that Scheuermann’s survey also indicated that the 4D approach was pre-

ferred by participants with a higher level of knowledge representation expertise,

likely due to its technical advantages. The advantages of the 4D pattern over the

N-ary relations approach from a representation and reasoning perspective were

also shown quantitatively in a comparison by Gangemi and Presutti [5] (in this

work, the authors refer to the N-ary approach as the Situations pattern).

Fig. 1. Example of 4D and reification (N-ary) approaches for representing the fact that
Block A is on Block B at time T1.

The 4D approach for OWL was first introduced with the 4D Fluents ontology

presented by Welty, Fikes and Makarios [15]. The authors propose a compact,

reusable ontology that enables a representation of fluents by adopting the 4D

view. This avoids the complication of capturing n-ary relations, and leads to

the rather nice, concise axiomatization. While the paper does include a brief

example, the focus is on the approach itself, rather than its implementation.

This approach was later re-interpreted by Krieger [9]. In this reinterpretation,

all of the concepts that were originally interpreted as entities are re-interpreted

as temporal parts (so-called “time slices”) and a class of perdurant

1
individuals

is introduced that has these entities as temporal parts. In other words, where the

original 4D approach would have us refer to some special class of individuals,

BlockAtT, that are temporal parts a particular entity of some class, Block, in
Kreiger’s approach we consider the Block class to be comprised of individuals

that are temporal parts of some Perdurant – in this case, the “process” or lifespan

of some Block. This rather simple switch results in several advantages that are

discussed in greater detail by Krieger [9]. Of particular importance is the fact that

this approach more easily supports the reuse of existing, atemporal ontologies. In

the iCity project, we found that there were many relevant domain ontologies that

were atemporal, but still desirable for reuse. Reuse is critical in this project, both

to simplify our development e↵orts and to create opportunities for linked data,

and we expect that this situation is not unique. Owing to these advantages, the

logical design pattern presented here is based on the re-interpreted 4D approach.

The representation of change over time is addressed in several other places in

more recent work in the form of design proposals [16], as well as new ontologies

[14, 2]. Independent of the nature of the solutions, the issue existing work is that

it fails to provide pragmatic guidance to support its adoption. When defining

temporal concepts, whether from scratch or by reusing existing ontologies, we

recognized a repeatable solution that we have distilled here in the form of a

pattern for the implementation of a 4D approach to representing change over

time.

3 Capturing Change 101

One of many temporal concepts required for the iCity ontology is that of a

vehicle. There exist a variety of Semantic Web ontologies that define this concept

but do not capture the possibility of changes that occur to a vehicle over time.

Rather, an ontology will typically provide static definitions of the vehicle concept

describing properties such as the manufacturer, vehicle identification number

(vin), colour, number of doors, type of engine, and so on. A simple example of

1 The concept of a perdurant is one of two key concepts that correspond to distinct
philosophical views of the world: perdurantism and endurantism, (or 4D and 3D,
respectively). In the perdurantist view no entity is ever wholly present at some
point in time, and so a perdurant represents the the entire entity as it is extended
through time. This terminological distinction is attributed to Lewis [10]. A detailed
review of these concepts is out of the scope of this work.

a representation found in an existing ontology might be as follows:

Vehicle v =1hasVin.Vin

Vehicle v 8hasColour.Colour
Vehicle v =1hasMake.Manufacturer

Some of these properties may be subject to change over time (e.g. colour)

while others may be static, however this is not identified in the definition. The

same is true for many domain ontologies: a concept is defined but the possibility

of its properties changing is not acknowledged. This is problematic when the

concept of time plays a role in an intended application, as some aspects of the

domain concepts (e.g. a Vehicle) will change over time.

In the following sections, we outline how an ontology with an atemporal defi-

nition such as the one above may be modified to capture change over time. First,

an ontology of change that introduces the basic concepts of manifestations and

perdurants is imported, then the logical design pattern is applied. Although the

pattern does include some signature from the ontology of change, it is identified

as a Logical Design Pattern [4] because it is independent of a particular domain;

much of its signature is empty, containing placeholders for classes and properties

and thus providing a logical structure rather than content. This process may also

be applied to define temporal concepts from scratch.

3.1 A Minimal Ontology of Change

The Foundational Ontology of Change

2
adopts the re-interpreted 4D view pro-

posed by Krieger [9]. It is important to emphasize that the ontology itself is not

the focus of this contribution. It is a minimal set of axioms designed to provide

a basis upon which temporal representations for the various concepts in the do-

main may be built. Should it be required, the guide prescribed here could easily

be followed with some alternative, possibly stronger, 4D ontology of change.

The ontology introduces two key classes: TimeVaryingEntity and Manifesta-
tion3. A TimeVaryingEntity corresponds to the invariant part of a concept that is

subject to change. As per Krieger, a TimeVaryingEntity is viewed as a perdurant.

A TimeVaryingEntity has Manifestations that demonstrate its changing proper-

ties over time. The class of TimeVaryingEntity is equivalent to the class of things

that have some Manifestations - and only Manifestations - in the hasManifesta-
tion relation. A Manifestation is a snapshot of some TimeVaryingEntity, existing

at some Instant (possibly Interval) in time during which the TimeVaryingEntity

exists.

2 https://w3id.org/icity/iCity-Change
3 The ontology defines new set of terms to avoid confusion with other representa-
tions, as well as to improve the understandability for the related project on urban
informatics. Further discussion of this design choice is outside of the scope of this
work.

In addition to recognizing the manifestationOf relationship, it is useful to

recognize when two manifestations are of the same TimeVaryingEntity. This re-

lationship is captured with the sameTimeVaryingEntity property, which is defined

through object property chaining as follows:

manifestationOf o inverse(manifestationOf) ! sameTimeVaryingEntity

Naturally, some ontology of time is required for this representation. In the im-

plementation, OWL-Time [7] was selected owing mostly to its prevalence and

comprehensiveness. However, it should be noted that this work does not rely on

its use and so other theories of time might easily be substituted.

3.2 Implementation: A Logical Design Pattern for Capturing
Change Over Time

To apply the Change of Time Varying Entities

4
logical design pattern requires

that the designer import the Ontology of Change into the domain ontology being

developed and perform the steps outlined in Figure 2 for each concept (or class,

if an existing atemporal ontology is being reused), C, that is subject to change.

1. Define the concept C as a subclass of Manifestation.
Axiom Type 1 ManifestationC v Manifestation

2. Define the perdurant (TimeVaryingEntity) counterpart class for the concept.
Axiom Type 2 PDC v TimeVaryingEntity

3. Include any invariant properties from the Manifestation subclass in the axioms
for the TimeVaryingEntity subclass. Where invariantProperty is the invariant
property and CE is the class expression:
Axiom Type 3 PDC vinvariantProperty.CE
Exception: If the object in the class expression also subject to change
(i.e., a subclass of Manifestation), then Axiom Type 3 is applied with the
TimeVaryingEntity subclass in place of the Manifestation subclass class in
the class expression (CE).

4. Restrict the hasManifestation relationship for this new pair of TimeVaryin-
gEntity and Manifestation subclasses.
Axiom Type 4 PDC ⌘ 9 hasManifestation.ManifestationC
u 8 hasManifestation.ManifestationC
Axiom Type 5 ManifestationC ⌘ 9 manifestationOf.PDC

u 8 manifestationOf.PDC

Fig. 2. The process to apply the Logical OP for Change for a given concept. Underlined
terms indicate place-holders for domain-specific properties and classes to be specified
when implementing the pattern: PDC denotes the subclass of TimeVaryingEntity, and
ManifestationC denotes the subclass of Manifestation for the concept, C.

4 http://ontologydesignpatterns.org/wiki/Submissions:Change of Time Varying Entities

The first step defines (or extends) the class to be a subclass of Manifestation.

As a result, the class now also has some temporal extent (i.e. it exists over some

point or interval in time), and is a manifestation of some TimeVaryingEntity.

From the previous vehicle example, we would have: Vehicle v Manifestation.

For each of these new subclasses of Manifestation, the designer must now

define its perdurant counterpart. This new class (introduced in Step 2) is a

subclass of the TimeVaryingEntity class. It captures the invariant aspects of

each concept, while the set of Manifestations captures how it changes over time.

For a vehicle, we might call the class defined in Step 2 “VehiclePerdurant” or

“VehiclePD” for readability to make its role as the time varying class (as opposed

to the manifestation subclass) clear. The new class is defined with the following

statement: VehiclePD v TimeVaryingEntity.

It is straightforward to see that any property that cannot change over time

(i.e. is invariant) should not only be a property of the Manifestation, but also a

property of the entire TimeVaryingEntity (perdurant), whereas a property that

may change with time can only be a property of the Manifestation. Therefore,

any properties that were originally defined in the atemporal class representation

remain properties of the class (now, a Manifestation), and a subset of these

properties will define the perdurant class. Precisely which properties these are

is, in the end, an ontological decision for the designer. For example, the vin

of a Vehicle should not change, and so we might define this as a property of

both Vehicle and VehiclePD; we refer to this type of property as invariant.

On the other hand, the colour of a car may change over time and so while it

may be a property of Vehicle, it is reasonable that colour is not a property

of VehiclePD. Step 3 includes these invariant properties in the axioms for the

TimeVaryingEntity subclass. This is captured by applying the original axioms

for each invariant property. For hasVin, the result is: VehiclePD v= 1 hasVin.Vin.
The hasMake property is also invariant, however a Manufacturer may be subject

to change. In this case, we apply the exception of Step 3 for the hasMake property:
VehiclePD v= 1 hasMake.ManufacturerPD.

The Change Ontology recognizes a constraint that any TimeVaryingEntity

should have manifestations (and only manifestations) in the hasManifestation re-

lation, and vice versa for any Manifestation belonging to a TimeVaryingEntity.

Similar constraints should be specialized for all corresponding pairs of Manifes-

tation and TimeVaryingEntity subclasses. This is enforced by Step 4. For the

classes Vehicle and VehiclePD, the result is: VehiclePD⌘ 9hasManifestation.Vehicle
u 8hasManifestation.Vehicle and

Vehicle ⌘ 9manifestationOf.VehiclePD u 8manifestationOf.VehiclePD.

By applying the pattern proposed here, the atemporal representation of the

Vehicle class considered initially is easily transformed to a temporal representa-

tion that captures changes that may occur in the domain, as illustrated in Figure

3. It should now be clear why adopting the approach by Krieger is advantageous

for the reuse of domain ontologies. Any existing, atemporal ontologies might be

reused with this approach, requiring only that we add to rather than rename or

manipulate the existing axioms.

Fig. 3. A representation of the vehicle example (a) before and (b) after the guidelines
are applied. Shaded classes and properties indicate reuse from the atemporal represen-
tation.

4 Additional Semantics for Change

Applying the pattern in the Section 3.2 achieves a straightforward representation

of change in a given domain. In some cases, an extension to this representation

may be desired. Capturing additional semantics provides a better understanding

of the domain and may support various interesting reasoning tasks such as entity

recognition, property inheritance, and consistency checking, described below:

Entity recognition: recognizing what entity some individual is a manifesta-

tion of. As an example in the context of urban informatics, from a dataset of

vehicle locations where each observation corresponds to a Vehicle, but can

we recognize specifically which Vehicle?

Property inheritance: inferring the inheritance of properties between an en-

tity and its manifestations. This can be useful in cases of incomplete infor-

mation.

Consistency checking: determining whether the assertion that a manifesta-

tion corresponds to some entity is in fact correct (or possible). Perhaps the

record of some Vehicle has been incorrectly annotated as a manifestation of

a di↵erent (incorrect) Vehicle; can we recognize this?

The semantics required for these tasks cannot be enforced in OWL directly,

due to its representation limitations. Instead, the design pattern is extended in

SWRL [8] to indicate of how the ontology can be extended (by rules or other

means) should the intended application require it.

A deeper semantics of change may be specified by more closely considering

the properties’ behaviour relative to a particular concept. Here, we recognize

two distinct types of properties: invariant and variant. It is straightforward to

see that a property’s type is relative to a particular concept. For example, a

property such as height may be invariant for a table, but variant for a person.

Identifying these property types is based on the semantics of the concept; in

practice, this is an ontological decision for the designer. Revealing questions to

ask when making this assessment are: Can the value of this property change? If

the value of the property changes, is it still the same thing (e.g. is it still the

same vehicle)?

These property types are reminiscent of the meta-properties introduced by

Guarino and Welty’s OntoClean [6]. It is important to first make the distinction

that the “properties” described in OntoClean are in fact not the same as the

properties we discuss here. The notions of rigidity and identity are ascribed to

meanings of expressions, and thus they are more general than the property types

described here that apply to properties of classes in OWL. Invariant properties

are analogous to being essential for a particular Class (“property”), whereas the

variant properties might be thought of as non-rigid, as they are not essential

for all of the instances of things which they are properties of. However, there

is no direct mapping between these property types as the notions of invariant

and variant used here are defined relative to a particular class, while essence and

rigidity are not.

4.1 Invariant Property

The pattern presented previously recognizes a type of property that is not sub-

ject to change over time for a concept, termed invariant. An invariant property

holds for a concept, independent of time. This means that an invariant property

is a property of the TimeVaryingEntity class, and must be inherited by all of its

Manifestations. Capturing this semantics supports the reasoning task of prop-

erty inheritance described earlier. It is formalized as follows, where again, these

underlined terms are placeholders for domain specific properties and classes,

to be specified when implementing the pattern. The following axiom types are

restricted to invariant properties that do not have a TimeVaryingEntity or Man-

ifestation as the object of the invariant property. An axiom type to address that

type of relationship will follow.

Axiom Type 6 PDC(?x), manifestationOf(?xt,?x), invariantPropertyC(?x,?y),
(not(TimeVaryingEntity))(?y) ! invariantPropertyC(?xt,?y)

Axiom Type 7 PDC(?x), manifestationOf(?xt,?x), invariantPropertyC(?xt,?y),
(not(Manifestation))(?y) ! invariantPropertyC(?x,?y)

The vin is an example of an invariant property for a Vehicle. Axiom Types

6 and 7 may be applied to capture this as follows:

– VehiclePD(?x), manifestationOf(?xt,?x), hasVin(?x,?y), (not(TimeVaryingEntity))(?y)
! hasVin(?xt,?y)

– VehiclePD(?x), manifestationOf(?xt,?x), hasVin(?xt,?y), (not(TimeVaryingEntity))(?y)
! hasVin(?x,?y)

Assuming that the design pattern is applied appropriately it is not necessary to

include the clause regarding the nature of the object of the property (in this case,

whether the vin is a time varying concept or not), however it is good practice

to do so as a kind of sanity constraint. Note that by omitting this constraint,

this pattern can be expressed directly in OWL with the use of object property

chaining, as follows: manifestationOf o invariantPropertyC ! invariantPropertyC
An alternative form to the above rules must be taken into account in the

case that the object of the invariant property is also a time varying concept.

In this case, the property holds with a perdurant individual (members of the

TimeVaryingEntity class), and thus also between the corresponding manifesta-

tions. This results in an additional consideration with regard to the particular

manifestations that are to be related: they must exist at the same time. The

alternate rules are specified below.

Axiom Type 8 PDC(?x), manifestationOf(?xt,?x), invariantPropertyC(?x,?y),
manifestationOf(?yt,?y), existsAt(?xt,?t), existsAt(?yt,?t) ! invariantPropertyC(?xt,?yt)

Axiom Type 9 PDC(?x), manifestationOf(?xt,?x), manifestationOf(?yt,?y),
invariantPropertyC(?xt,?yt) ! invariantPropertyC(?x,?y)

Returning to the Vehicle example, a manufacturer is something that may

be subject to change over time (consider: it’s employees, countries of operation,

net worth, an so on). The hasMake property may be defined in more detail by

applying the Axiom Types 8 and 9 to obtain the following rules:

– VehiclePD(?x), manifestationOf(?xt,?x), hasMake(?x,?y), manifestationOf(?yt,?y),
existsAt(?xt,?t), existsAt(?yt,?t) ! hasMake(?xt,?yt)

– VehiclePD(?x), manifestationOf(?xt,?x), manifestationOf(?yt,?y), hasMake(?xt,?yt)
! hasMake(?x,?y)

An important characteristic of the 4D representation that is highlighted by the

identification of these rules is that object properties that are inverses of one

another in an atemporal representation will not necessarily be the inverse of

one another here. Specifically, for an invariant property of a time varying entity,

the “inverse” must be likewise invariant for the object of the relation in order

for the two relations to be defined as the inverse of one another. Consider the

example of the hasMake and manufacturerOf relations between a Vehicle and a

Manufacturer. In an atemporal domain, these relations would likely be defined

as inverse properties of one another. However, in a 4D view, this relationship

is no longer desirable. While the hasMake relation is invariant for a Vehicle,

the manufacturerOf relation is variant for a Manufacturer; Company X was not

always the manufacturer of a particular Vehicle, so only some of a company’s

manifestations should have this property. While it is still possible to refer to the

inverse of the hasMake relation, the important point is that in the 4D view this

inverse property is not equivalent to the manufacturerOf relation.

4.2 Invariant Property Key

All invariant properties can in some cases di↵erentiate between distinct entities.

For example, observations of a Vehicle at two points in time with distinct invari-

ant properties must be di↵erent Vehicles. However, certain invariant properties

also serve to support entity recognition; they identify not only when two enti-

ties are distinct, but also when they are the same. We refer to such properties

as invariant property keys. OWL2 provides the HasKey construct to define the

semantics of a key for a particular class. For all invariant property keys, we can

specify axioms as follows, where invariantPropertyKeyC is any invariant property

key for some concept C:

Axiom Type 10 PDC HasKey invariantPropertyKeyC

Axiom Type 11 ManifestationC HasKey invariantPropertyKeyC

For such properties we can identify when an invariant property key indicates

that an individual is a manifestation of a particular perdurant, and similarly

when it indicates that two individuals are manifestations of the same perdu-

rant. Capturing this semantics supports the reasoning task of entity recognition

described earlier. It can be specified with the following axiom types:

Axiom Type 12 ManifestationC(?xt), invariantPropertyKeyC(?xt,?n),
PDC(?y), invariantPropertyKeyC(?y,?n), not(TimeVaryingEntity(?n))
! manifestationOf(?xt,?y)

Axiom Type 13 ManifestationC(?xt1), invariantPropertyKeyC(?xt1,?n),
ManifestationC(?xt2), invariantPropertyKeyC(?xt2,?n),
not(Manifestation(?n)) ! sameTimeVaryingEntity(?xt1,?xt2)

The vin of a Vehicle is an example of such a property. Axiom Types 10–13

can be applied to capture the following rules:

– Vehicle HasKey hasVin
– VehiclePD HasKey hasVin
– Vehicle(?x), hasVin(?x,?n), VehiclePD(?y), hasVin(?y,?n), (not(TimeVaryingEntity))(?n)

! manifestationOf(?x,?y)
– Vehicle(?xt1), hasVin(?xt1,?n), Vehicle(?xt2), hasVin(?xt2,?n), (not(Manifestation))(?n)

! sameTimeVaryingEntity(?xt1,?xt2)

Axiom types 12 and 13 are restricted to invariant property keys where the

object of the property is not subject to change. As with general invariant prop-

erties, a slightly di↵erent rule is required in the case that the property relates

two time varying concepts:

Axiom Type 14 ManifestationC(?xt), invariantPropertyKeyC(?xt,?nt), PDC(?y),
invariantPropertyKeyC(?y,?n), manifestationOf(?nt,n)
! manifestationOf(?xt,?y)

Axiom Type 15 ManifestationC(?xt1), invariantPropertyKeyC(?xt1,?nt1),
ManifestationC(?xt2), invariantPropertyKeyC(?xt2,?nt2), sameTimeVaryingEntity(?nt1,?nt2)
! sameTimeVaryingEntity(?xt1,?xt2)

5 Conclusion

By following the guidelines proposed here, the atemporal representation of the

Vehicle class is easily modified to account for change over time. This process was

followed in the development of an initial version of an urban system ontology

5
for

the iCity project. The Change design pattern allowed us to easily and uniformly

account for change over time throughout the ontology. This was particularly

useful for the reuse of domain ontologies to provide definitions for the concepts

of Households, Persons, Organizations, and so on.

Change over time is an undeniable aspect of many areas, however there is

little evidence of domain ontologies capable of capturing change. This work pro-

vides an important resource for Semantic Web practitioners: a logical design

pattern to support the capture of change in the design of new and (redesign of)

existing theories. Beyond this, the pattern provides a guide for possible exten-

sions to the ontology. Certainly, other useful types of properties may be identi-

fied, and more rules could be pursued. This pattern does not cover specialized

notions of change such as those required to capture activities and resource con-

sumption.While we do not claim this extended semantics to be exhaustive, the

provided axiom types support reasoning tasks of entity recognition and property

inheritance, and all of these additional semantics serve to support more robust

consistency checking.

The survey by Scheuermann and colleagues found the 4D approach to be

lacking in intuitiveness. This pattern may help to address this; it is the intent of

this work to facilitate the development of more expressive ontologies by simplify-

ing the process of incorporating change over time and increasing its accessibility

for a wider audience of Semantic Web practitioners.

We gratefully acknowledge support provided by the Ontario Ministry of Re-

search and Innovation through the ORF-RE program.

References

1. Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., Cano, J.C., Calafate, C.T.,
Manzoni, P.: Veacon: A vehicular accident ontology designed to improve safety on
the roads. Journal of Network and Computer Applications 35(6), 1891–1900 (2012)

2. Batres, R., West, M., Leal, D., Price, D., Masaki, K., Shimada, Y., Fuchino, T.,
Naka, Y.: An upper ontology based on iso 15926. Computers & Chemical Engi-
neering 31(5), 519–534 (2007)

3. Bernhard Lorenz, Hans Jürgen Ohlbach, L.Y.: Ontology of transportation net-
works. Tech. rep. (2005)

4. Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on ontologies,
pp. 221–243. Springer (2009)

5. Gangemi, A., Presutti, V.: A multi-dimensional comparison of ontology design
patterns for representing n-ary relations. In: SOFSEM 2013: Theory and Practice
of Computer Science: 39th International Conference on Current Trends in Theory
and Practice of Computer Science. vol. 7741, p. 86. Springer (2013)

5 https://w3id.org/icity/iCity-UrbanSystem/1.1

6. Guarino, N., Welty, C.A.: An overview of ontoclean. In: Handbook on ontologies,
pp. 201–220. Springer (2009)

7. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions
on Asian Language Information Processing (TALIP) 3(1), 66–85 (2004)

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
et al.: Swrl: A semantic web rule language combining owl and ruleml. W3C Member
submission 21, 79 (2004)

9. Krieger, H.U.: Where temporal description logics fail: Representing temporally-
changing relationships. In: Annual Conference on Artificial Intelligence. pp. 249–
257. Springer (2008)

10. Lewis, D.: On the plurality of worlds, vol. 322. Oxford (1986)
11. Miller, E.J.: icity: Urban informatics for sustainable metropolitan growth; a pro-

posal funded by the ontario research fund, research excellence, round 7. Tech. rep.,
University of Toronto Transportation Research Institute (2014)

12. Natasha Noy, Alan Rector, P.H.C.W.: Defining n-ary relations on the semantic
web (2006), https://www.w3.org/TR/swbp-n-aryRelations/

13. Scheuermann, A., Motta, E., Mulholland, P., Gangemi, A., Presutti, V.: An empir-
ical perspective on representing time. In: Proceedings of the seventh international
conference on Knowledge capture. pp. 89–96. ACM (2013)

14. Trypuz, R., Kuzinski, D., Sopek, M.: General legal entity identifier ontology. In:
Formal Ontology in Information Systems (FOIS) Ontology Competition (2016)

15. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In: Formal
Ontology in Information Systems (FOIS). vol. 150, pp. 226–236 (2006)

16. Zamborlini, V., Guizzardi, G.: On the representation of temporally changing in-
formation in owl. In: Enterprise Distributed Object Computing Conference Work-
shops (EDOCW), 2010 14th IEEE International. pp. 283–292. IEEE (2010)

