
On Inheritance In Knowledge Representation 
Mark S. Fox 

Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, Pennsylvannia 15213 

Abstract and Introduction 
This paper examines the problem of inheritance in Knowledge representation. Research in the formellteton of 

Knowledge hes resulted in a small number of Knowledge classes and associated inheritance relations, e.g., INSTANCE 
IS-A, DBROTHERC, PERSPtCTIVE, Virtual-Copy, etc. (Brachman, 1977; Fahlman, 1977; Hayes, 1977; Levesque & Mylopoloue, 
1978). The process of inheritance is defined by the procedures that access these inheritance relationa. This paper 
proposes that: 1) in some cases inheritance between concepts is idiosyncratic and does not fit predefined 
inheritance relations, 2) learning and discovery systems require information on how and why one concept wes 
derived f rom another, which again Is not represented in standard inheritance relations, and 3) current methods of 
speci fy ing inheritance modification and similarity mappings are complex to specify and understand. Consequently, e 
decleret ive approach to inheritance and similarity specificaton is presented as a solution to the above problems. 

1. Specifying Idiosyncratic Inheritance 

1 Experience with representing large varieties of 
Knowledge show that a small fraction (<10Z) escape 
standard representation schemes, requiring specialized 
"f ixes" (Fahlman, 1979). The idiosyncratic nature of 
language and Knowledge precludes its complete 
structuring using a small set of classes and associated 
processes. We conjecture that a small set of inheritance 
types will not suffice. In a some cases the inheritance 
relation will have to be specialized to the particular 
concepts they relate. Hence, the inheritance link is 
context sensitive. Tailoring inheritance to its context 
requires the explication of exactly what \± to be 
transferred, excluded, added, and/or modified. 

Current approaches to handling idiosyncratic 
inheritance rely on property classification to distinguish 
between properties to be inherited and those not to be 
inherited (e.g., structure vs assertion properties, set vs 
type properties). For example, a structural properly is 
inherited *among classes while assertions are not. But 
anomalous sub-classes may occur which do not inherit all 
inheritable attributes (classification is fuzzy at best). To 
handle anomalous sub-classes, artificial sub-classes are 
inserted between the original super-class and 
sub-classes. Appropriate attributes are moved from the 
super-class to the artificial classes. This phenomenon is 
called anomaly induced class-splitting. Typically, 
class-splitting is a bifurcation where one branch is a 
singleton 
set containing the anomaly. Class-splitting increases the 
s ize 2 and complexity of the representation thus 
increasing search time, obfuscating possible relationships 
among concepts, and negating the storage and description 

*This research was aponaorod by tha Defense Advancad Roaoarch 
Projects Agency (DOD), Arpe Ordor No 3597, monitored by tha Air Force 
Avionics Laboratory Contract 539815-71.0-1551. In addition, the 
author it supported In part by a National Research Council of Canada 
Post graduate Scholarship. 

2 Wors t COM la 2" closes for N attribute i. e,, a discrimation not. 

benefits of identifying concepts with class descriptions. 
It seems that Knowledge classification is an art. which 
tr ies to reduce anomaly induced class-splitting. 

Secondly, a Knowledge representation must represent 
arbi t rary mappings between concepts. For example a 
man is like a pig if you map nose onto snout and home 
onto sty. 

To reduce the complexity of representing idiosyncratic 
concepts and their inheritance relations and to allow 
more expressive power in describing the similarity 
relationships between concepts, declarative, idiosyncratic 
inheritance relations are introduced. Current approaches 
to specifyng inheritance is implicit in the representation 
end explicit in the procedures that manipulate the 
representation. Our goal is to move the explication of 
inheritance from the procedure to an inheritance relation. 
This enables the context-sensitive specification of 
inheritance modification. Thus removing the need for 
class-splitting and any other complexity increasing 
methods. Secondly, the concept of inheritance is 
expanded to encompass similarity mappings between 
concepts (e.g., analogical relations). In the following, we 
focus not on one particular representation but attempt to 
describe the mechanism in a representation independent 
fashion. 

We propose a single unidirectional INHERITANCE (INH) 
relation between two concepts (A — INH —> B) with an 
attached INHERITANCE CONCEPT (C). The inheritance concept 
C explicitly states what set of information is inherited, 
what is excluded, what is created, and what is modified. 
The inheritance concept can be viewed as a label on the 
inheritance link specifying a set of transformations. To 
allow specifications of this type, a language for 
manipulating representations must be created. While 
t ry ing not to be pinned down to a single representation, 
we propose the following primitives: 

282 



These primitives are applied to any slot, description, link, 
node, and other structured primitives of a representation. 
They specify modifications of the physical structure of a 
concept to create a new concept. These primitives admit 
the description of arbitrary transformations among 
concepts. They are additions to existing representations 
and are to be interpreted as specifying modifications 
using the primitives of the particular representation 
language. 

For example, role restriction would have an INHERITANCE 
link specifying all of the structure inherited using the 
PASS primitive, and the node being restricted by using the 
RESTRICT primitive. Differentiation, that is, the addition of 
SLOTS would use the ADD primitive. Analogical inheritance, 
would require the PASSing of some information, EXCLUSION 
of other information, ADDition of new information, and the 
SUBSTITUTION of information via a MAP (as found in 
B-structures (Moore & Newell, 1972)). Just what is the 
semantics of the information PASSED, ADDED, MAPPED, etc. 
depends on the underlying representation. 

It is obvious from the current specification of the 
inheritance concept that a great deal of information 
would have to be specified by the PASS primitive. In 
almost all cases the PASS primitive will be the primary 
primitive used. The more information to PASS, i.e., the 
more complex the concept, the more cumbersome it is to 
wr i te the inheritance concept. To alleviate this problem, 
we re-introduce the notion of information classes, which 
is the basis of current representations. The inheritance 
primitives would then specify that a class of 
representation structures, e.g., assertions, structures, 
etc., is to be PASSED, EXCLUDED, etc. But the inheritance 
concept can still refer to particular structures (node or 
link). Extending the classification concept to its logical 
conclusion, we can associate a type with the inheritance 
concept. For example, IS-A, DSUPERC, INSTANCE/OF, etc. can 
all be inheritance concept types whose inheritance 
definition correspond to their interpretation in other 
representations. But the typed inheritance concept may 
also specify exceptions to the type's inheritance 
definition. That Is, an inheritance relation could have an 

3lt should bo noted that substitute is the combination of exclude 
ond add. Wo Include it ■■ ■ primitive because separeting It into 
oxcludo ond odd would lose the information that there is a 
contingency, that one structure replace another 

inheritance concept of type "is-a" (which has a standard 
definition composed of inheritance primitives) but is 
modified in the particular context by additional 
inheritance primitives. Since inheritance types are 
defined using inheritance primitives, new types can be 
defined for commonly occuring relations. 

To illustrate these ideas an example is taken from 
zoology. Example 1 depicts a simplified representation 
language. A concept is divided into three parts: 1) the 
VIEW which specifies what the concept is related to. Each 
slot in the VIEW is a different inheritance concept, 2) the 
META-CORPUS which specifies wholistic (set, type) 
information, and 3) the CORPUS which specifies structure 
information. Example 2 represents a partial description 
of a *mammal (a denotes a concept). To add *platypus to 
the set of •mammals requires concept-splitting (the 
platypus is an exception to the mammal specification, It 
lays eggs): create a*onotreme with «egg-laying value 
for *birth-process (ex. 4), and another concept with 
* l ive-bir th value for ebirth-process. The alternative 
approach taken in this paper results in ex. 5. The 
*platypus has an inheritance concept of type *!S-A, but 
the definition of *is-A is overidden by the CONTRADICT 
primitive specifying that the aplatypus lays eggs instead 
of live birth. The REFINE primitive is used to replace the 
*head slot with a *bill and askull slot. 

2. Specifying Derivative Relations 

A second motivation for describing the relationship 
between two concepts explicitly is to allow learning and 
discovery systems to analyse how concepts are derived 
from other concepts. 

The goal of learning and discovery systems is to 
generate new concepts via specialization, generalization , 
or analogy. In particular, these systems search for 
derivations that are "interesting", where interesting is 
defined by some heuristic metric. To properly focus 
search, the method for deriving one concept from another 
must be recorded. This information is used to analyse 
how a concept was derived and what should be done to 
derive a different but related concept. In Lenat*s AM 
system (1976), a set of heuristics were used to decide 
how to alter (extend) existing concepts to derive new and 
interesting concepts. A similar approach is used by Fox 
(1978) to decide how to specialize concepts to create 
new and interesting concept hierarchies. In Winston's 
system (1978), transfer frames are hypotheses for what 
slots to transfer between concepts; heuristics are used 
for deciding candidate slots. In each system, there exists 
a set of actions whose application defines a space of new 
concepts. The action(s) chosen and reason(s) for the 
choice(s) are important pieces of information used by 
these systems in deciding, how to extend concepts. The 
INHERITANCE concept should store it. 

We further define each of the INHERITANCE primitives as 
having the following three attibutes: 1) SET 2) VALUE 3) 
REASONS. The SET attribute specifies the information the 
primitive could act on. That is PASS, ADD, EXCLUDE, MAP, 
RESTRICT, GENERALIZE, or REFINE. The VALUE specifies the 
actual information chosen from the SET. REASONS specify 
what decisions led to the choice. Of the three attributes, 
REASONS is the least defined as it is dependent on both 
representation and Inference mechanisms. If a PASS was 
to be specified, then the SET attribute of the PASS would 



list all the structures, e.g., DATTRS the PASS could be 
applied to. The VALUE attribute would denote the actual 
s t ructure chosen, the REASON attribute would "explain" 
why the value was chosen from the SET. 

As pointed out earlier, the SUBSTITUTE primitive is 
equivalent to an EXCLUDE and ADO. Hence, it has two sets 
of attr ibutes. (SETe, VALUEe, REASONe) describe the 
information to be replaced, and (SET a, VALUEa, REASONa) 
describes the information actually substituted. 

By specifying each of those attributes for each of the 
inheritance primitives, it is hoped that more information 
wi l l be made available for learning and discovery systems 
to make decisions intelligently. By no means are these 
attr ibutes complete. Their purpose is to focus attention 
on the types of information needed in inheritance 
specifications. 

Example 6 illustrates how the SET, VALUE and REASON 
primit ives are specified in ADD. In this example, a 
•p la typus is specialized as a *purple-platypus by 
choosing a color out of the set of possible colors. 

3. Conclusion 

Inheritance is the primary, most powerful 
representat ion primitive available in Knowledge 
representations. The explication of representation 
semantics has led to the creation of many types of 
inheritance links. The semantics of these inheritance 
types are defined by the procedures that manipulate the 
representat ion. Two problems arise in classifying 
inheritance relations. First, some inheritance relations 
are idiosyncratic and do not conform to popular 
classifications. Second, learning and discovery systems 
require an explication of how concepts are related, in 
particular what information is inherited, modified, added 
and/or excluded, and upon what information were these 
changes based. To adequately deal with these problems, 
the semantics of inheritance must be moved from the 
procedures to the representation. This view led to the 
creat ion of a general inheritance relation with an 
associated inheritance concept. The inheritance concept 
expl ici t ly defines what information is inherited by 
concept, and what additions, deletions and substitutions 
are made. It also describes the set of choices available 
in making the alterations and why a particular alteration 
was chosen. 

6. Lenat D.B., (1976), "AM: An Artificial Intelligence 
Approach to Discovery in Mathematics as Heuristic 
Search,", (Ph.D. Thesis), Computer Science Dept. Stanford 
U., A1M-286. 

7. Levesque H, and J. Mylopoulos (1978), "A Procedural 
Semantics for Semantic Networks," AI MEMO 78-1 , Dept. 
of Computer Science, University of Toronto. 

8. Moore J., and A. Newell, (1973), "How can Merlin 
Understand," In L. Gregg (ed.), Knowledge and Cognition, 
Potomac MD.: Lawrence Erlbaum Associates. 

9. Winston P.H (1978), "Learning by Creatifying 
Transfer Frames," Artificial Intelligence. Vol. 10, pp. 
147-172. 

Examples 

1. {*Concept 
View: <view-slots> 
Meta-corpus: <meta-corpus-slots> 
Corpus: <corpus-slots>} 

2. {*Mammal 
Corpus: 

»Nursing-Method: aBreast 
*Birth-Process: alive 
*color: 
•Head:} 

3. {*Mammal 
Corpus: 

•Nursing-Method: •Breast} 
4. {*Monotreme 

View: 
*Is-a: aMammal 

Corpus: 
*Birth-Process: *Egg-laying} 

5. {*Platypus 
View: 

*Is-A: aMammal 
(Corpus: 

(CONTRADICT DESCRIPTION OF *Birth-Process SLOT 
WITH aEgg-laying) 

(REFINE SLOT *Head TO SLOT *Bill AND SLOT *Skull))} 
6. {*Purple-Platypus 

View: 
• Is-a: aPlatypus 
(Corpus: (ADD VALUE ePurple TO DESCRIPTION OF 

SLOT *Color FROM SET {ared, *yellow, *purple} 
FOR REASON "environment is purple"))} 


