
City Indicator Consistency Analysis: An Approach to 
Inconsistency Detection 

 by  

Yetian Wang 

A thesis submitted in conformity with the requirements 
for the degree of Master of Applied Science 

Graduate Department of Mechanical and Industrial Engineering 
University of Toronto 

© Copyright by Yetian Wang 2017 



 

ii 

City Indicator Consistency Analysis: An Approach to 

Inconsistency Detection 

Yetian Wang 

Master of Applied Science 

Graduate Department of Mechanical and Industrial Engineering 
University of Toronto 

2017 

Abstract 

Cities use a variety of metrics to evaluate and compare their performance. The ISO 37120 

standard provides a definition for city indicators that measure a city’s quality of life and 

sustainability. A problem that arises in indicator-based comparisons, is whether the comparison 

is invalid due to inconsistencies in the data used to derive them?  In this thesis we present three 

types of inconsistency analysis for automating the detection of inconsistencies in open city data. 

Namely, definitional consistency analysis that evaluates if data used to derive a city indicator is 

consistent with the indicator’s definition (e.g., ISO 37120); transversal consistency analysis that 

evaluates if city indicators published by two different cities are consistent with each other; and 

longitudinal consistency analysis that evaluates if an indicator published by a city is consistent 

over different time intervals. City indicator consistency analysis enable the possibility of 

consistently measuring and comparing performances of cities. 



 

iii 

Acknowledgments 

I would like to thank my supervisor, Professor Mark S. Fox for the constant support and 

guidance throughout this research and during the preparation of this thesis. His knowledge and 

patience steered me in the right direction whenever I needed guidance. 

I would also like to thank Dr. Daniela Rosu for her valuable comments. 

Finally, I would like to thank my parents, Zhifeng Wang and Hong Zheng, and my wife, 

Huangyuan Wu for their support and encouragement. 



 

iv 

Table of Contents 

Acknowledgments.......................................................................................................................... iii 

Table of Contents ........................................................................................................................... iv 

List of Tables ............................................................................................................................... viii 

List of Definitions .......................................................................................................................... ix 

List of Figures ................................................................................................................................ xi 

List of Appendices ....................................................................................................................... xiv 

Chapter 1 Introduction .....................................................................................................................1 

  Introduction .................................................................................................................................1 

1.1  Summary of Contribution ....................................................................................................4 

1.2  Overview of Dissertation .....................................................................................................4 

Chapter 2 Background .....................................................................................................................5 

  Background .................................................................................................................................5 

2.1  City Indicators ......................................................................................................................5 

2.1.1  ISO 37120 Standards ...............................................................................................5 

2.1.2  City Anatomy ...........................................................................................................6 

2.1.3  The Organization for Economic Co-operation and Development (OECD) .............7 

2.1.4  IBM Smart Cities Initiative ......................................................................................8 

2.2  City Indicator Ontologies .....................................................................................................9 

2.2.1  PolisGnosis Project ..................................................................................................9 

2.2.2  Global City Indicator Ontologies ...........................................................................11 

2.2.3  Architecture of the PolisGnosis GCI Ontologies ...................................................24 

2.2.4  IBM’s Scribe Ontology ..........................................................................................27 

2.2.5  PAS 182 Smart City Concept Model .....................................................................28 

2.2.6  City Anatomy Ontology .........................................................................................29 

2.3  Consistency ........................................................................................................................31 



 

v 

2.3.1  Database Consistency ............................................................................................32 

2.3.2  Ontology Consistency ............................................................................................32 

2.3.3  ConsVISor..............................................................................................................33 

2.3.4  SimpleConsist ........................................................................................................35 

2.3.5  Semantic Law Checker with Vehicle Ontology .....................................................36 

2.3.6  Protégé OWL Reasoner .........................................................................................37 

2.3.7  Information Consistency ........................................................................................39 

2.4  Summary ............................................................................................................................43 

Chapter 3 Definitional Consistency Analysis ................................................................................46 

  Definitional Consistency Analysis ............................................................................................46 

3.1  Type Inconsistency ............................................................................................................50 

3.1.1  TC1. Class Type inconsistency ..............................................................................50 

3.1.2  TC2. Instance Type Inconsistency .........................................................................52 

3.1.3  TC3. Property Inconsistency ..................................................................................53 

3.2  Temporal Inconsistency .....................................................................................................56 

3.2.1  T1. Non-Overlap Interval Inconsistency ................................................................57 

3.2.2  T2. Interval Equality Inconsistency .......................................................................59 

3.2.3  T3. Subinterval Inconsistency ................................................................................61 

3.2.4  T4. Temporal Granularity Inconsistency ...............................................................64 

3.3  Place Inconsistency ............................................................................................................68 

3.3.1  G1. Place Equality Inconsistency ..........................................................................69 

3.3.2  G2. SubPlace Inconsistency ...................................................................................70 

3.3.3  G3. Dynamic Place inconsistency ..........................................................................71 

3.3.4  G4. Dynamic Place Temporal Inconsistency .........................................................73 

3.4  Measurement Inconsistency ...............................................................................................74 

3.4.1  M1. Quantity Measure Inconsistency ....................................................................75 



 

vi 

3.4.2  M2. Indicator Unit Component Inconsistency .......................................................77 

3.4.3  M3. Singular Unit Inconsistency ...........................................................................78 

3.5  Summary ............................................................................................................................80 

Chapter 4 Transversal and Longitudinal Consistency ...................................................................84 

  Transversal and Longitudinal Consistency ...............................................................................84 

4.1  Transversal Consistency Analysis .....................................................................................84 

4.1.1  Trans_TC. Transversal Type Inconsistency ..........................................................88 

4.1.2  Trans_TI. Transversal Temporal Inconsistency ....................................................90 

4.1.3  Trans_PI. Transversal Place Inconsistency ............................................................92 

4.1.4  Transversal Measurement Inconsistency ...............................................................96 

4.2  Longitudinal Consistency Analysis ...................................................................................96 

4.2.1  Long_TC. Longitudinal Type Inconsistency .........................................................99 

4.2.2  Long_TI. Longitudinal Temporal Inconsistency ...................................................99 

4.2.3  Long_PI. Longitudinal Place Inconsistency ........................................................101 

4.2.4  Longitudinal Measurement Inconsistency ...........................................................104 

4.3  Summary ..........................................................................................................................104 

Chapter 5 Implementation and Example......................................................................................108 

  Implementation and Example .................................................................................................108 

5.1  City Indicator Consistency Checker ................................................................................108 

5.2  Definitional Inconsistency Example ................................................................................115 

5.3  Transversal Inconsistency Example .................................................................................131 

5.4  Longitudinal Inconsistency Example ...............................................................................138 

5.5  Summary ..........................................................................................................................143 

Chapter 6 Conclusion and Future Work ......................................................................................144 

  Conclusion and Future Work ..................................................................................................144 

6.1  Summary and Contributions ............................................................................................144 



 

vii 

6.2  Future Work .....................................................................................................................145 

Bibliography ................................................................................................................................146 

Appendix I – List of Files ............................................................................................................154 

Appendix II – CICC Refernce Manual ........................................................................................156 

Appendix III – Prolog Implementation ........................................................................................175 



 

viii 

List of Tables 

Table 1 List of ISO 37120 indicator definitions and GCI theme ontologies ................................ 26 

Table 2 Prefixes used in the GCI ontologies ................................................................................ 27 

Table 3 List of constraints, adapted from Mendel-Gleason, et al. (2015) .................................... 35 

Table 4 Notation of Definition and Theme Specific Knowledge ................................................. 47 

Table 5 Notation of Indicator Data and City Specific Knowledge ............................................... 48 

Table 6 Notation for transversal consistency analysis .................................................................. 85 

Table 7 Indicator value and supporting data from different cities comply to definition Di ......... 86 

Table 8 Feature Code Definition from Geonames ........................................................................ 94 

Table 9 Notation for longitudinal consistency analysis ................................................................ 97 

Table 10 Prefix Registration ....................................................................................................... 114 

Table 11 List of definitional inconsistencies in example ............................................................ 120 

Table 12 Properties, values, and restrictions of 15.2_trt_2013 ................................................... 123 

Table 13 List of transversal inconsistencies in example ............................................................. 134 

Table 14 Values of properties of 15.2_trt_2013 and 15.2_nyc_2013 ......................................... 136 

Table 15 List of longitudinal inconsistencies in example ........................................................... 139 

 



 

ix 

List of Definitions 

Defintion 1 Correspondence ......................................................................................................... 49 

Defintion 2 CI. Correpondence Inconsistency .............................................................................. 50 

Defintion 3 TC1. Class Type Inconsistency ................................................................................. 51 

Defintion 4 TC2. Instance Type Inconsistency ............................................................................. 52 

Defintion 5 TC3. Property Inconsistency ..................................................................................... 54 

Defintion 6 TC. Type Inconsistency ............................................................................................. 55 

Defintion 7 Time ........................................................................................................................... 57 

Defintion 8 T1. Non-Overlap Interval Inconsistency ................................................................... 58 

Defintion 9 T2. Interval Equality Inconsistency ........................................................................... 60 

Defintion 10 T3. Subinterval Inconsistency ................................................................................. 63 

Defintion 11 Granularity ............................................................................................................... 65 

Defintion 12 T4. Temporal Granularity Inconsistency ................................................................. 66 

Defintion 13 TI. Temporal Inconsistency ..................................................................................... 67 

Defintion 14 Place ......................................................................................................................... 68 

Defintion 15 G1. Place Equality Inconsistency ............................................................................ 69 

Defintion 16 G2. Subplace Inconsistency ..................................................................................... 71 

Defintion 17 Revision ................................................................................................................... 72 

Defintion 18 G3. Dynamic Place inconsistency ........................................................................... 72 

Defintion 19 G4. Dynamic Place Temporal Inconsistency .......................................................... 74 

Defintion 20 PI. Place Inconsistency ............................................................................................ 74 



 

x 

Defintion 21 Unit .......................................................................................................................... 75 

Defintion 22 M1. Quantity Measure Inconsistency ...................................................................... 76 

Defintion 23 M2. Indicator Unit Component Inconsistency ........................................................ 77 

Defintion 24 M3. Singular Unit Inconsistency ............................................................................. 79 

Defintion 25 MI. Measurement Inconsistency .............................................................................. 80 

Defintion 26 Inter-indicator correspondence ................................................................................ 87 

Defintion 27 Inter_CI. Inter-indicator Correpondence Inconsistency .......................................... 88 

Defintion 28 Trans_TC. Transversal Type Inconsistency ............................................................ 89 

Defintion 29 Trans_TI. Transversal Temporal Inconsistency ...................................................... 92 

Defintion 30 Administration (Feature Code) ................................................................................ 93 

Defintion 31 Trans_G1. Feature Code Inconsistency ................................................................... 93 

Defintion 32 Trans_G2. Transversal Dynamic Place Inconsistency ............................................ 95 

Defintion 33 Trans_PI. Place Inconsistency ................................................................................. 95 

Defintion 34 Long_TC. Longitudinal Type Inconsistency ........................................................... 99 

Defintion 35 Long_T1. Duration Inconsistency ......................................................................... 100 

Defintion 36 Long_TI. Longitudinal Temporal Inconsistency ................................................... 101 

Defintion 37 Long_G1. Longitudinal Geometry Inconsistency ................................................. 102 

Defintion 38 Long_G2. Longitudinal Coordinates Inconsistency .............................................. 103 

Defintion 39 Long_PI. Longitudinal Place Inconsistency .......................................................... 104 

 



 

xi 

List of Figures 

Figure 1 Elements of City Anatomy, adapted from CPA (2015a) .................................................. 7 

Figure 2 PolisGnosis Architecture, adapted from Fox (2015a) .................................................... 10 

Figure 3 Temporal Intervals, adapated from Allen (1983) ........................................................... 13 

Figure 4 GCIO Unit of Measure, adapted from Fox (2015c) ....................................................... 16 

Figure 5 OM implemented by GCIO. Adapted from Wang & Fox (2015) .................................. 17 

Figure 6 GovStat Ontology, adapted from Fox (2013) ................................................................. 18 

Figure 7 GCI Ratio Indicator, adapted from Fox (2015b) ............................................................ 19 

Figure 8 GCI Shelter Ontology, adapated from Wang & Fox (2015) .......................................... 21 

Figure 9 15.2 shelter indicator definition, adapted from Wang & Fox (2015) ............................. 23 

Figure 10 Structure of ISO 37120 Ontologies, adapted from Fox (2015b) .................................. 25 

Figure 11 Scribe's model of a message, adapted from Uceda-Sosa et al. (2012) ......................... 28 

Figure 12 PAS 182 SCCM Item View, adapted from BSI (2014)................................................ 29 

Figure 13 Core Concepts of CAO, adapted from CPA (2016) ..................................................... 30 

Figure 14 CAO Indicator Concepts, adapted from CPA (2016) ................................................... 31 

Figure 15 ConsVISor Architecture, adapted from Baclawski, et al. (2002) ................................. 34 

Figure 16 Classes and Properties of Vehicle Ontology, adapated from Freitas et al. (2011) ....... 36 

Figure 17 Architecture of a semantic law checker, adapted from Freitas et al. (2011) ................ 37 

Figure 18 Classes and Attributes in KP, adpated from Fox & Huang (2003) .............................. 42 

Figure 19 Published data and city knowledge Toronto ................................................................ 44 

Figure 20 Merged indicator data and city knowledge .................................................................. 44 



 

xii 

Figure 21 Published indicator data Si and definition Di................................................................ 47 

Figure 22 Evaluation of TC2(mij,nik) consistency given that Cor(mij, nik) ................................... 53 

Figure 23 Evaluation of TC2(mij,nik) inconsistency given that Cor(mij, nik), case 2 ................. 55 

Figure 24 Time Interval Representation ....................................................................................... 59 

Figure 25 Instances mij and mik where T2(mij,mik) ....................................................................... 61 

Figure 26 An interval is during another ........................................................................................ 62 

Figure 27 An interval overlaps with another ................................................................................ 62 

Figure 28 Instances mij and mik where T4(mij,mik) ................................................................... 67 

Figure 29 Instances mij and mik where G1(mij,mik) ..................................................................... 70 

Figure 30 Dynamic place inconsistency ....................................................................................... 73 

Figure 31 Instances mij and mik where M1(mij,mik) ...................................................................... 76 

Figure 32 Indicator component inconsistency where T2(mij,mik) ................................................ 78 

Figure 33 Time interval linked by indicator of Toronto and NYC ............................................... 91 

Figure 34 Indicator value and supporting data published by a city at different time comply with 

definition Di .................................................................................................................................. 98 

Figure 35 CICC Architecture ...................................................................................................... 109 

Figure 36 CICC User Interface ................................................................................................... 111 

Figure 37 CICC Output Text ...................................................................................................... 112 

Figure 38 ISO Indicator Data for Toronto 2013, adapted from City of Toronto (2014) ............ 115 

Figure 39 Published 15.2 indicator value and supporting data for Toronto 2013 ...................... 117 

Figure 40 ISO 37120 15.2 Indicator and Definition ................................................................... 118 



 

xiii 

Figure 41 CICC output for TC2(trt_homeless_person_2013, gcis:Homeless_person) .............. 121 

Figure 42 Type Consistency with City Definition ...................................................................... 122 

Figure 43 Temporal inconsistency example ............................................................................... 126 

Figure 44 Subplace inconsistency example ................................................................................ 128 

Figure 45 Indicator Unit Component Inconsistency example .................................................... 131 

Figure 46 15.2 City Indicator data for Toronto 2013 .................................................................. 132 

Figure 47 15.2 City Indicator data for New York City 2013 ...................................................... 133 

Figure 48 Representation of 2013 from Toronto and NYC with ot:unitMonth .......................... 135 

Figure 49 Toronto and NYC Homeless Person .......................................................................... 137 

Figure 50 15.2 indicator value and supporting for Toronto in 2013 and 2015 ........................... 138 

Figure 51 y2013 represents first half of 2013 ............................................................................. 141 

Figure 52 Toronto_homeless_person 2013 vs 2015 ................................................................... 143 

 



 

xiv 

List of Appendices 

Appendix I – List of Files ............................................................................................................154 

Appendix II – CICC Refernce Manual ........................................................................................156 

Appendix III – Prolog Implementation ........................................................................................175 



 

1 

Chapter 1  
Introduction 

 Introduction 

 Cities use a variety of metrics to evaluate and compare their performance. With the introduction 

of ISO37120, which contains 100 indicators for measuring a city’s quality of life and 

sustainability, it is now possible to consistently measure and compare cities. A problem that 

arises in indicator-based comparisons, is whether the comparison is invalid due to 

inconsistencies in the data used to derive them? 

The goal of PolisGnosis project (Fox, 2015) is to construct an intelligent agent that can diagnose 

a city’s performance. It will automate the longitudinal analysis, i.e., how and why a city’s 

indicators change over time, and transversal analysis, i.e., how and why cities differ from each 

other, in order to discover the root causes of differences. The agent must satisfy the following 

requirements: 

1. Indicator Independence.  Since there are a vast number of indicators used by cities, 

beyond those defined in the ISO 37120 standard, and ISO standards evolve over time, 

we do not want our agent to have any knowledge of indicator definitions “hardwired” 

into its code.  An indicator’s definition must be an input to the agent. 

2. City Independence. Cities openly publish vast amounts of data that that our agent 

would like to use.  But the data lacks any standard models or vocabularies - every 

dataset differs in structure, attributes and content. It would be practically impossible 

to construct an agent that can understand these datasets. Hence the agent will assume 

that cities will adopt or translate into a standard for representing the information used 

to derive its indicators.  

3. Analysis Independence. Given the variety of indicators and the ensuing variety of 

data used to derive them, a variety of methods of analysis may also be required.  

Rather than hardwire these methods into PolisGnosis, it would be better if they too 

were inputs to the agent. 



2 

 

To achieve indicator and city independence, indicator definitions, the indicator values and the 

data used to derive them must be represented using a standard representation, and used as input 

to the agent. The Global City Indicator Ontologies (GCIO) (Fox, 2015) provide standard 

representations in the form of ontologies for many of the indicator themes in the ISO 37120 

standard 1. 

Before diagnosis can be performed, the city indicators must be evaluated to be consistent in order 

to attain meaningful comparison. City indicators with inconsistent definitions are incomparable.  

City indicators represented using ontologies can be evaluated using existing ontology 

consistency checkers and reasoners to verify its logical consistency. That is, there exists at least 

one model that satisfies all axioms of the ontology. In addition to logical consistency, we also 

need to evaluate different types of consistency for city indicators in the context of knowledge 

about indicator values, definitions, theme and city specific indicator knowledge. We are 

interested in verifying if the published indicators are indeed following the indicators’ definitions. 

For example, ISO 37120 stated that absolute homelessness is defined to be those who lives 

outside or in a temporary emergency shelter. Thus if a city publishes indicator data that involved 

homeless population (e.g. homeless population size per 100 000 population) must refer to the 

types of homeless person within the scope of the definition of homelessness in order to be 

consistent with the definition. The indicators also need to be evaluated between cities (e.g. 

definition of homelessness are the same between cities) and compared over time within a city 

(e.g. definition of homelessness remain unchanged) when the results of city indicators are 

compared transversally and longitudinally. 

City indicator consistency is a problem of evaluating both consistency of the representation of 

indicator (its definition and theme specific knowledge) and the information it carries (measure 

and meta-information). We define three types of consistencies of city indicator definitions 

depending on the definitions it is evaluated with respect to: 

                                                 

1 See http://ontoogy.eil.utoronto.ca for the complete list of ontologies. 



3 

 

 Definitional consistency evaluates if data used to derive a city indicator is consistent with 

the indicator’s definition (e.g. ISO 37120). For example, if the indicator is a 

student/teacher ratio, then a city’s reported indicator is inconsistent if it includes teachers 

that do not satisfy the ISO 37120 definition, e.g., administrative staff. 

 Transversal consistency evaluates if city indicators published by two different cities are 

consistent with each other. For example, if the indicator measures homeless population 

size per 100 000 population, then indicators are transversally inconsistent if the homeless 

definition used by each differs. Note that each city’s indicator can be definitional 

consistent but not transversal consistent. 

 Longitudinal consistency evaluates if an indicator published by a city is consistent over 

different time intervals. For example, if the indicator measures a city’s PM10 air 

pollution, then the indicator is longitudinally inconsistent if the geospatial dimensions of 

the city have changed, which may arise through amalgamation. 

When a city such as Toronto publishes its indicator data, it publishes a set of indicator instances 

as well as city specific knowledge such as the definition of homeless person and homeless shelter 

represented using separate ontology. City indicator consistency requires the evaluation of the 

consistency of Toronto’s city specific knowledge with respect to the standard (e.g. GCI 

ontologies), city specific knowledge of another city (e.g. New York’s definition of homeless 

shelter), and different versions of the same indicator (e.g. Toronto’s definition of homeless 

shelter in 1998) when it comes to definitional, transversal and longitudinal consistency 

evaluation respectively.  

This thesis defines a set of definitional, transversal and longitudinal inconsistencies and a process 

for detecting them in city indicator values and the supporting data used to derive them. Given an 

indicator definition, an indicator’s value and supporting data, both represented using the GCIO, 

the equivalent graph representation is analyzed to detect inconsistencies. The algorithm performs 

sub-graph matching to detect mismatches such as temporal, geospatial, measurement, and 

population definition differences. 



4 

 

1.1 Summary of Contribution 

The main contributions of this thesis are as follows: 

1. Formally defining definitional, transversal, and longitudinal inconsistencies for city 

indicators 

2. Providing an implementation of inconsistency detection in Prolog. 

1.2 Overview of Dissertation 

The chapters of this thesis are outlined as follows: 

Chapter 2 provides background information on existing city indicator standards, ontologies 

within the domain of city indicator representation, types of consistency and consistency 

evaluation tools such as the Protégé reasoners. 

Chapter 3 introduces definitional consistency analysis and defines a set of definitional 

inconsistencies in terms of type, temporal, geographical, and measurement inconsistency. 

Correspondence between indicator values and supporting data and indicator’s definition is also 

defined. First Order Logic (FOL) axioms are provided for each type of inconsistency as well as a 

brief example. 

Chapter 4 introduces transversal and longitudinal consistency analysis and defines a set of 

transversal and longitudinal inconsistencies in terms of type, temporal, geographical, and 

measurement inconsistency. Correspondence between two sets of indicator values and the 

supporting data and the notion of prime and secondary classes is also defined. Similar to Chapter 

3, First Order Logic (FOL) axioms and examples are provided for each type of inconsistency. 

Chapter 5 introduces the implementation City Indicator Consistency Checker (CICC) which was 

implemented using SWI-Prolog. Examples of definitional, transversal and longitudinal 

consistency analysis are provided in this chapter using indicator values and the supporting data 

published by Toronto and New York City which were represented as instances of ISO 37120 

15.2 indicator’s definition which uses the GCIO and city specific ontologies created for 

demonstration purpose. 

Chapter 6 provides conclusion for this dissertation and discusses possible future research work.



 

5 

Chapter 2  
Background 

 Background 

This chapter is divided into three parts.  The first part reviews city indicators that have been 

developed by various organizations.  The second part reviews ontologies that have been 

developed for representing city indicator definitions and the data used to derive them.  The third 

part reviews ontology-based methods for determining the consistency of information. 

2.1 City Indicators 

In 2007, it was recognized that “there are thousands of different sets of city (or urban) indicators 

and hundreds of agencies compiling and reviewing them. Most cities already have some degree 

of performance measurement in place. However, these indicators are usually not standardized, 

consistent or comparable (over time or across cities), nor do they have sufficient endorsement to 

be used as ongoing benchmarks.” (Hoornweg et al., 2007). For example, in (Hoornweg et al., 

2007, p 32), the WHO list of city indicators related to homeless population size was defined to 

be “estimated number of homeless people” without an exact definition of ‘homeless people’ nor 

what method should be used for estimation. Cities who publish indicator data with ambiguous 

definition provide little value in comparing and evaluating city performance. One city might 

include only homeless people who live on the street in their data while another city includes 

people that live in shelters as well.  A number of approaches have been made to standardize the 

definitions of city indicators across cities around the world. 

2.1.1 ISO 37120 Standards 

The Global City Indicators Facility (GCIF) at University of Toronto developed a set of city 

indicators with clear and precise definitions (Global City Indicators Facility, 2010a; McCarney, 

2011). These indicators formed the basis of the ISO 37120 “Sustainable development of 

communities – Indicators for city services and quality of life” standard.  The standard contains 

100 indicators covering themes such as Education, Energy, Health, Safety, Finance and Shelter 

(ISO37120, 2014).  For example, the ISO 37120 standard defines the indicator “The number of 

homeless per 100 000 population” as follows: 



6 

 

“The number of homeless per 100 000 population shall be calculated as the total number 

of homeless people (numerator) divided by one 100 000th of the city’s total population 

(denominator). The result shall be expressed as the number of homeless per 100 000 

population. 

The following definition is used by the United Nations to define homelessness: Absolute 

homelessness refers to those without any physical shelter, for example, those living 

outside, in parks, in doorways, in parked vehicles, or parking garages, as well as those in 

emergency shelters or in transition houses for women fleeing abuse.” (ISO37120, 2014). 

ISO 37120 indicator definitions reduce possible ambiguities of interpretation by cities, leading to 

greater consistency in measurement and comparability across cities. 

2.1.2 City Anatomy 

City Protocol is a framework for cities to improve performance that benefit citizens and their 

quality of life (CPA, 2015a). It seeks to define a common systems view for cities around the 

globe, and then embraces or develops protocols that will help to break city silos. City Protocol 

aims at working across diverse cities by interconnecting them and finding common solutions. 

Data Interoperability and City Indicators (DICI) is a project from City Protocol that aims at 

creating data interoperability protocols to enable transparent and smart data sharing among cities 

and citizens (CPA, 2015a). It extends ISO 37120 indicators with additional indicators that 

conform the schema defined by the City Anatomy (CPA, 2015b). City anatomy is an organizing 

framework that builds a platform and tools to support the evaluation of city performances with 

the following elements: 

 Structure - a set of physical structures 

 Society - the living entities that make up a city’s society, and  

 Interactions - and the flow of interactions between them 



7 

 

 

Figure 1 Elements of City Anatomy, adapted from CPA (2015a) 

For example, City Protocol extends ISO 37120 indicators in categories such as education, 

shelter, and transportation with new indicators such as the following: Percentage of social 

housing, Percentage of empty housing, Percentage of housing ownership, Percentage of housing 

for rent, Proximity to convenience shopping, and Percentage of subscribers to city sports 

facilities. These indicators provided by City Protocol extends the indicators “to function like 

living, working or shopping” (CPA, 2015b). 

2.1.3 The Organization for Economic Co-operation and Development 
(OECD) 

The Organization for Economic Co-operation and Development (OECD)2  is a forum that 

provides a platform to help governments to improve and coordinate policies in terms of 

economic growth, financial stability, and social development and develops solutions to common 

problems of member countries. OECD provides a number of indicators for various areas such as 

                                                 

2   www.oecd.org 



8 

 

health, education, environment and trade. Indicators in each category were further classified into 

specific subjects. For example, the OECD Main Economic Indicators was classified into subjects 

such as production, sales, international trades, Composite Leading Indicators, etc. Each indicator 

is described in English along with methods used to collect and compile the results of the 

indicators from individual countries (OECD, 2013). 

The indicators’ definitions were not published in Sematic Web compatible formats, but their 

statistical data were published following the Statistical Data and Metadata eXchange (SDMX)3 

which is a standard used to publish raw statistic data and metadata. Some of OECD’s data was 

used in the research of Capadisli et al., (2013) where an effort was made to transform raw 

statistic data and metadata into RDF representation. RDF data Cube vocabulary, which builds 

upon SKOS4, SCOVO5, etc. (Cyganiak & Reynolds, 2014), was implemented to described multi-

dimensional statistic data and PROV-O6 ontology was used for provenance information 

(Capadisli et al., 2013). 

2.1.4 IBM Smart Cities Initiative 

IBM Institute for Business Value as part of the IBM Smart Cities initiative proposed a solution 

for measuring performances of cities and compare the result across different cities from the globe 

(Dirks, Keeling, & Dencik, 2009). IBM identified a number of core systems that operate as base 

systems of a city, e.g., city services, citizens, business, transport, communication, water and 

energy (Dirks & Keeling, 2009). Indicators such as cost of healthcare, number of days to start a 

business, congestion cost, car ownership rate, percentage of online population, etc., were 

introduced for the cities’ core systems. 

The IBM Intelligent Operations Center that supports the IBM Smart Cities initiative provides a 

key performance indicator (KPI) subsystem that identifies a set of KPIs, metrics, events, and 

                                                 

3 https://sdmx.org/ 

4 https://www.w3.org/2004/02/skos/ 

5 http://sw.joanneum.at/scovo/schema.html 

6 https://www.w3.org/TR/prov-o/ 



9 

 

conditions (Smith, 2011). The KPI subsystem includes indicators spanning categories such as 

public safety, transportation and water (Smith, 2013). As defined by Smith (2011), KPIs are 

“quantifiable measurements employed by organizations to monitor and assess performance. They 

help reduce complex organizational performance information into a consumable format that 

allows organizations to more easily assess performance by comparing KPIs to the organization's 

stated objectives”. One shortcoming is that organizations have different indicators thus it is 

difficult to compare the indicators cross organizations. Examples for IBM KPIs are crime 

response time, firefighter injuries, and public safety budget (Smith, 2011). 

2.2 City Indicator Ontologies 

With standards of city indicators established we now need to translate these standards into 

machine-readable format that can be published on Semantic Web. In this section we review a 

number of ontologies created to represent information about city indicators. With these 

ontologies, cities are able to publish their indicator data in Semantic Web compatible format 

such as RDF and OWL. Cities publish indicator value and supporting data by creating instances 

of indicators, their metadata and supporting data7. 

2.2.1 PolisGnosis Project 

The PolisGnosis project aims to “develop theories, embodied in software, to perform 

longitudinal analysis (i.e., how and why a city’s indicators change over time) and transversal 

analysis (i.e., how and why cities differ from each other at the same time), in order to discover 

the root causes of differences”. Information about the indicator represented by ontologies 

(indicated by Global City Indicator Ontologies in Figure 2) are taken as input to the PolisGnosis 

Analysis Engine along with a set of consistency and diagnosis axioms used to determine the root 

cause of change in indicators (Fox, 2015a). 

                                                 

7 See http://ontoogy.eil.utoronto.ca for example of indicators published using ontologies that represent ISO 37120 
standards. 



10 

 

 

Figure 2 PolisGnosis Architecture, adapted from Fox (2015a) 

The very first task is to develop “a set of ontologies that can be used to represent ISO 37120 

indicators, their supporting data and theme specific knowledge”. The objectives of these 

ontologies are summarized below as stated by Fox (2015a): 

1. Represents the meta information of a “published indicator value such as its units, scale, 

year published and who published it”. 

2. Represents the “complete definition of each indicator in the ISO 37120 standard”. 

3. Represents “each city’s indicator value (for a particular year), plus the supporting data 

used to derive it, using the definitions”. 

4. Represents “theme specific indicator knowledge”, such as basic knowledge about shelter 

and housing, such as households, slums, homeless person, homeless shelters, etc. 

5. The representation of a “city's theme specific indicator knowledge”. For example, what is 

the definition of homeless person in the city? What type of shelters are considered as 

homeless shelters? 



11 

 

The ontologies created within the PolisGnosis project will be discussed in the following section 

and an overall structure of these ontologies in section 2.2.2. 

2.2.2 Global City Indicator Ontologies 

A number of Global City Indicators (GCI) ontologies have been developed for city indicator 

themes such as education (Fox 2015b), innovation (Forde & Fox, 2015), shelter (Wang & Fox, 

2015), health (Falodi & Fox, 2015), finance (Wang Z. & Fox, 2016), and environment (Dahleh 

& Fox, 2016). Other themes such as transportation, safety, and energy are undergoing 

development process. Each themed ontology provides a set of class and properties that represent 

the definition of an indicator, its value and supporting data, as well as the theme specific 

knowledge required to analyse this indicator. For the purpose of our example that will be 

presented in later sections, we also briefly describe how ISO 37120 shelter indicators are 

defined. 

GCI Foundation Ontology 

GCI Foundation ontology was created by (Fox, 2013) to represent general fundamental concepts 

such as time, geographic location, statistics, and provenance. The concepts represented by GCI 

Foundation ontology provide a foundation for each theme specific GCI ontology such as GCI-

Education (Fox, 2015b), GCI-Innovation (Forde & Fox, 2015), GCI-Shelter (Wang & Fox, 

2015), and GCI-Health (Falodi & Fox, 2015), etc. GCI Foundation ontology provides the ability 

to represent meta information of a city’s indicator value spanning the following concepts (Fox, 

2015c): 

 Placenames: unique identifiers for cities that the city or area that is measure by the 

indicator, 

 Time: when an indicator is valid, or when it was produced, 

 Measurement: quantities and units of indicators, 

 Provenance: how an indicator was derived and by whom, 

 Validity: the degree to which an indicator is believed to be correct, and 

 Trust: the degree to which the individual or organization is trusted to produce an indicator 

correctly. 



12 

 

Placename 

An area within a city can be represented with a number of ontologies. For the reasons stated in 

Fox (2015c), the GCIO selected Schema.org8 and GeoNames9 ontology to represent required 

geospatial information. Schema.org provides classes of placenames such as sc:City, sc:Country, 

and sc:State. It also provides classes for sc:GeoCoordinates (i.e., elevation, latitude, and 

longitude) and sc:GeoShape that represents the shape of an area as a polygon or circle. 

GeoNames ontology has the class geo:Feature which contains properties such as name, 

featureClass, featureCode, population, postalCode, nearbyFeatures, and wikipediaArticle, etc. 

Properties such as ‘population’ and ‘postalCode’ are data properties thus the information we can 

retrieve from geo:Feature is limited. Wang & Fox (2015) implemented Schema.org and 

GeoNames ontology in GCI Shelter Ontology by extending geo:’Feature’ class with properties 

that relate geo:’Feature’ to sc:’GeoCoordinates’ and sc:’GeoShape’.  

Time 

In Fox (2015c), it was discussed that the temporal relationship between the indicator and its 

supporting data need to be represented with a time ontology that supports reasoning about time 

points, time intervals and the relationships among them. OWL-Time (Pan & Hobbs, 2004) was 

chosen to be embedded in the GCI Foundation ontology. More information about OWL-Time 

can be found in Pan & Hobbs (2004) and was summarized in Fox (2013). In general, OWL-Time 

represent time as a point (ot:Instant)10 or an interval (ot:Interval). A ot:’DateTimeDescription’ 

class was used to represent a date plus time using properties such as year, month, day, hour, etc. 

Cities publish their data based on a specific time span (i.e., yearly, monthly, etc.) thus city 

indicators must be able to indicate the temporal period that the indicator was published for. This 

                                                 

8 the Schema.org ontology is available at: http://schema.org/. We will use the prefix “sc:” to identify classes and 
properties from the ontology. 

9 www.geonames.org 

10 We will use the prefix “ot:” to identify classes and properties from the OWL-Time ontology 



13 

 

can be achieved via the property gci:‘for_time_interval’11 or appropriate subproperties that 

relates the ISO 37120 indicator to a valid ‘DateTime’ (e.g. ot:DateTimeInterval class from 

OWL-Time). 

In OWL-Time (Pan & Hobbs, 2004), the class ot:DateTimeInterval is linked to the class 

ot:’DateTimeDescription’ has the following properties: unitType, year, month, week, day, 

dayOfWeek, dayOfYear, hour, minute, second, and timeZone. Where unitType has one of 

(owl:oneOf) the following values: :unitSecond :unitMinute :unitHour :unitDay :unitWeek 

:unitMonth :unitYear which specifies the temporal unit type of an individual. Pan & Hobbs 

(2004) provides examples for temporal unit type: the temporal unit type of 10:30 is minute 

(unitMinute), for March 20, 2006 it is day (unitDay), also 2013 has the temporal unit type of year 

(unitYear). Therefore an interval must have the unitType property with a value unitYear and 

‘year’ property with a value ‘2013’ in order to represent the year of 2013. 

 

Figure 3 Temporal Intervals, adapated from Allen (1983) 

                                                 

11 We use the prefix “gci:” to identify classes and properties from the GCI Foundation ontology 



14 

 

OWL-Time, based on the work of (Allen, 1983) has defined intervals with properties such as 

hasBeginning and hasEnd with range restricted to ot:Instant. It also provided interval relation 

properties such as intervalEquals, intervalBefore, intervalMeets, intervalOverlaps, intervalStarts, 

intervalDuring, intervalFinishes, and their inverse properties: intervalAfter, intervalMetBy, 

intervalOverlappedBy, intervalStartedBy, intervalContains, intervalFinishedBy, as shown in 

Figure 3. This provides us the ability to evaluate if all temporal components of the supporting 

data of the indicator are consistent with the indicator value. For example, a 15.2 indicator 

published in 2013 intended to measure the homeless population size ratio for the interval January 

1, 2013 to December 31st, 2013. The interval is related to the indicator via the property 

gci:’for_time_interval’. We need to consider the following questions regarding the indicator’s 

supporting data: when was the homeless population size collected? Was it collected before or 

during the interval? It is obvious that the supporting data would be inconsistent with the 

definition if it was collected before or after the interval specified by the indicator. 

In addition to represent the meta information about an indicator, the GCI Foundation ontology is 

also capable of representing an indicator’s definition and supporting data. 

Measurement 

As stated by Fox (2015c), “a city indicator is a measure of some property of a city. At the core of 

an indicator lies a number”. GCI Foundation ontology represents an indicator as a ‘Quantity’ 

which represents “what is being measured for the city” (Fox, 2015c). A ‘Quantity’, e.g. ‘length 

of ladder’, is linked to a ‘Measure’. A ‘Measure’ is measured with a number and a ‘unit of 

measure’, e.g. ‘3 metres’. The scale of ‘unit of measure’ can be a nominal, ordinal, interval or 

ratio scale. In order to represent these concepts, GCI Foundation ontology implements the 

Ontology of units of Measure and related concepts (OM) (Rijgersberg et al., 2013). The three 

core classes of OM include om:’Quantity’12, which is a parent class of all city indicators. The 

om:’Quantity’ class is linked to a om:’Unit_of_measure’ and a om:Measure. A 

om:‘Unit_of_measure’ can be a om:’Singular_unit’ (e.g. metre, kg) or a om:’Compound_unit’ 

which has subclasses such as om:’unit_multiplication’ and om:’unit_division’ (e.g. m/s). Units of 

                                                 

12 We use the prefix “om:” to identify classes and properties from the OM ontology 



15 

 

measure can also be multiple or submultiples of units. Multiple and submultiple units can be 

expressed with the use of prefixes such as ‘kilo’ or ‘milli’. E.g. kilometer (multiple), millimeter 

(submultiple). A set of base units are defined for each systems of units. For example, meter and 

seconds are base units for SI. GCI Foundation ontology defined a gci:’population ratio unit’ as 

an instance of om:’Unit_of_measure’ to represent the unit for a population ratio indicator. A 

gci:’population_ratio_unit’ has a om:numerator and om:denominator both linked to 

gci:’population_cardinality_unit’ (Figure 4). A om:’Measure’ has a om:’Unit_of_measure’ and is 

linked to a datatype via the property om:’numerical_value’ (Fox, 2015c). Figure 5 depicts the 

class structure combined from GCI Foundation and OM ontologies. 



16 

 

 

Figure 4 GCIO Unit of Measure, adapted from Fox (2015c) 



17 

 

 

Figure 5 OM implemented by GCIO. Adapted from Wang & Fox (2015) 

Statistics 

A ratio indicator has om:’numerator’ and om:’denominator’ which are properties that link to a 

specific kind of om:’Quantity’. GCI Foundation ontology has defined a subclass of 

om:’Quantity’ called gci:’Population_size’ with its unit linked to 

gci:’population_cardinality_unit’. The gci:’Population_size’ class has a property 

gci:’cardinality_of’ that is linked to gci:’Population’ class which was then linked a ‘Person’ class 

or its subclass depending on the theme specific knowledge of the indicator. 

GCI Foundation ontology implemented the GovStat13 general statistic ontology which provided 

the class ‘gs:Population’. A ‘gs:Population’ is linked to a ‘Parameter’ (e.g., count, mean, 

standard deviation) by the gs:’is_described_by’ property. In the case of 15.2 indicator it requires 

a count of the homeless and city population. In statistics it is almost always the case that only a 

                                                 

13 The GovStat Ontology is not available online, but a version with the GCI extensions can be found at: 
http://ontology.eil.utoronto.ca/govstat.owl. We will use the prefix “gs:” to identify classes and properties from the 
ontology. 



18 

 

portion of the population is measured. This portion is represented by the class gs:’Sample’, and 

the parameter being measured is represented as a subclass of gs:’Statistic’ (Fox, 2015c). Figure 6 

depicts the main classes and properties of the GovStat ontology. 

 

Figure 6 GovStat Ontology, adapted from Fox (2013) 

In order to represent its collection, the ‘Population’ class must identify the area in which the 

population resides, i.e., the city, and what characterizes a member of the population (Fox, 2013). 

Therefore the GCIO extended gs:‘Population’ class with the following two properties: 



19 

 

 ‘located in’ whose range is geo-spatial feature (e.g. City) that indicates the location of 

where the Population was drawn from. 

 ‘defined by’ whose range is a class that all members of the Population are subsumed by 

(e.g. Homeless population is defined by a homeless person) as discussed in the following 

section. 

Figure 7 illustrates the class structure of a ratio indicator defined by GCI Foundation ontology.  

 

Figure 7 GCI Ratio Indicator, adapted from Fox (2015b) 

GCI Shelters Ontology 

GCI Shelter ontology (Wang and Fox, 2015) was created to represent shelter theme specific 

indicator knowledge. The GCI Shelter ontology includes concepts such as households, slum 

gci:for_
SchoolYear

gci:cardinality_of

gci:for_city

gci:numerator gci:denominator

om:unit_of_measure

GCI_
Quantity

Ratio
Indicator

gci:
Population_
ratio_unit

gci:Population_Size gci:Population_Size

owl:subClassOf

"an object property"

gci:Population

gci:cardinality_of

gci:Population

SchoolYear

gci:defined_by

Person

gci:defined_by

Person

gci:City

gci:locatedin



20 

 

household, homeless person, and household with unregistered titles, slum area, shelters, and 

living conditions. These concepts are necessary when representing indicator definition outlined 

by the ISO 37120. For example, based on the definition of ISO 37120 for homeless person stated 

previously, we can exapand the definition with more detail: “Cooper (1995) discusses the ideas 

of relative and absolute homelessness. Absolute homelessness occurs when there is neither 

access to shelter nor the elements of home. A person may be in relative homelessness; that is, 

they may have a shelter but not a home” (Habitat, 2000). In Wang & Fox (2015), absolute and 

relative homeless person was defined as follow: “both subclasses of Homeless_person possess an 

object property gcis:livesIn14 but with different constraint values. Relative_homeless_person 

lives in homeless shelters (gcis:Homeless_shelter) while Absolute_homeless_person can live in 

any place throughout the city but not a homeless shelter or a home. We use the class 

‘sumo:Place’ to represent places that an absolute homeless person can live in.“ A homeless 

shelter can be further classified into emergency shelter, single adult shelter, and family shelter, 

etc. (Wang & Fox, 2015). Figure 8 provides an overview of the class and properties from GCI 

Shelter ontology. 

                                                 

14 We use the prefix “gcis:” to identify classes and properties from the GCI Shelter ontology 



21 

 

 

Figure 8 GCI Shelter Ontology, adapated from Wang & Fox (2015) 

ISO37120 Shelter Indicator Definition 

Wang & Fox (2015) define a Shelter ontology for representing the definitions and supporting 

data for the shelter theme indicators defined in ISO 37120. In the following we provide a 

detailed example of 15.2 shelter indicator definition. 



22 

 

Each indicator defined in the shelter theme of ISO 37120 standards was represented by class, e.g. 

iso37120:’15.2’15 which is the subclass of om:’Quantity’ class with a unit of measure that is a 

subclass of ‘om:Unit_of_measure’ and a value that is a subclass of ‘om:Measure’ where the 

actual numerical value of the indicator is linked to via a data property om:’numerical_value’. 

Meta information about this indicator is linked via object properties such as gci:’for_city’, 

gci:’for_time_interval’ which link the 15.2 indicator a ‘City’ and a ‘Interval’ that represent a 

year. 

The supporting data of the ISO 37120 15.2 indicator, namely, homeless population size 

(isos:’15.2_Homeless_population_size’)16 and population size of the city 

(isos:’City_population_size’), can also be represented. Both are represented as subclasses of 

om:’Quantity’ with a value and unit of measure. Each population size is a ‘cardinality of’ a 

population (gs:’Population’) with a property gci:’located_in’, that identifies the area that the 

Population is drawn from. This links a ‘Population’ to a ‘City’, and gci:’defined_by’ that 

identifies the members of the Population that are to be counted. In our case, a ‘homeless 

population’ is ‘defined by’ a ‘homeless person’. A set of consistency axioms are implemented in 

Prolog to ensure that indicator and supporting data are linked to the same unit of measure, 

placename, and temporal entities. Intra-indicator consistency axioms ensure all individuals 

within an indicator is consistent. E.g. populations of 15.2 indicator are referring to the same 

instance of city. Inter-indicator consistency axioms verify if individuals from two indicators are 

the same instance. E.g. Both 15.2 indicators published by Toronto and New York City are 

referring to the same year. Consistency axioms also describes arithmetical constraints that 

involves numerical comparison and arithmetical operations. For example, the value of a ratio 

indicator should be the quotient of its numerator divided by its denominator.  

Figure 9 depicts the structure of 15.2 indicator. Other concepts related to shelter indicators 

defined by ISO 37120 such as slum household population size, household size, and population 

size of households with unregistered titles, are also represented by class and properties. Detailed 

                                                 

15 ‘iso37120’ is the prefix used for ‘http://ontology.eil.utoronto.ca/ISO37120.owl#’. 

16 ‘isos’ is the prefix used for ‘http://ontology.eil.utoronto.ca/GCI/ISO37120/Shelters.owl#’. 



23 

 

information about shelter indicator definition represented in OWL can be found in (Wang & Fox, 

2015). 

 

Figure 9 15.2 shelter indicator definition, adapted from Wang & Fox (2015) 

The GCI ontologies discussed have represented the definition of ISO 37120 shelter indicators. 

Cities are able to publish a city indicator’s value and its supporting data by creating instances of 

classes from the definition. The shelter theme specific knowledge can be represented with the 

GCI Shelter ontology. Cities can extend the GCI Shelter ontology to represent city-specific 

knowledge such as the types of homeless shelters used when defining a ‘homeless person’. The 

GCI Foundation ontology was used as a basis, since it provides the ability to represent the meta 



24 

 

information of a published indicator. In next section we provide an overall view of the 

architecture of the ISO 37120 ontologies we described. 

2.2.3 Architecture of the PolisGnosis GCI Ontologies 

Figure 10 depicts “the organization of files used to define the ISO 37120 ontology the 

PolisGnosis project is developing. At the highest level, i.e., ISO 37120 Ontology level, the ISO 

37120 module contains the globally unique identifier (IRI) for each ISO 37120 indicator” (Fox 

2015a).  For example, for “Number of homeless per 100 000 population” indicator, the IRI is: 

http://ontology.eil.utoronto.ca/ISO37120.owl#15.2. This is also written as ‘iso37120:15.2’ by 

using the prefix ‘iso37120:’ to represent the IRI for ISO 37120 Ontology. 

The indicator definitions for each theme are represented by a different set of ‘.owl’ files. For 

example, the ISO37120/shelter definition discussed above, is used to represent definitions of ISO 

37120 shelter themed indicators. These indicator definitions will then implement corresponding 

GCI ontologies to represent theme specific knowledge. For example, the GCI Shelter ontology 

discussed previously was used to represent concepts related to shelter and housing social 

services. As discussed previously, all GCI theme specific ontologies use GCI Foundation to 

represent generic concepts such as population, quantity, measure and meta information (Fox, 

2015c). 



25 

 

 

Figure 10 Structure of ISO 37120 Ontologies, adapted from Fox (2015b) 

A complete list of theme specific indicator definitions and their corresponding GCI ontology 

with theme specific knowledge is shown in Table 1 below with their development status as of 

June 2016: 

Indicator Definition  Theme Specific Ontology  Development 

Status 

ISO37120/Education.owl (Fox, 2015b)  GCI Education (Fox, 2015b)  Complete 

ISO37120/Shelter.owl (Wang & Fox, 

2015) 

GCI Shelter (Wang & Fox, 

2015) 

Complete 

ISO37120

ontology_v3
.1.rdf

(Geonames)

om-1.8
(Measurement)

Prov
(Provenance)

ot
(Time)

kp.owl
(Validity)

GCI-
Foundation.owl

GCI-
Education.owl

GCI-
Innovation.owl

GCI-
Shelter.owl

GCI-Health.owl

ISO37120/
Education.owl

ISO37120/
Innovation.owl

ISO37120/
Shelter.owl

ISO37120/
Health.owl

trust.owl

organization.
owl

IS O 37120 O ntology

G C I O ntology

 E nterprise O ntology

 Foundation O ntology

govstat.owl
(Statistics)



26 

 

ISO37120/Innovation (Forde & Fox, 

2015) 

GCI Innovation (Forde & Fox, 

2015) 

Complete 

ISO37120/Health (Falodi & Fox, 2015)  GCI Health (Falodi & Fox, 2015)  Complete 

ISO37120/Finance (Wang Z. & Fox, 

2016) 

GCI Finance (Wang Z. & Fox, 

2016) 

Complete 

ISO37120/Environment (Dahleh & Fox, 

2016) 

GCI Environment (Dahleh & 

Fox, 2016) 

Complete 

ISO37120/Transportation  GCI Transportation  In progress 

ISO37120/Energy  GCI Energy  In progress 

ISO37120/Safety  GCI Safety  In progress 

Table 1 List of ISO 37120 indicator definitions and GCI theme ontologies 

Prefixes used in the GCI ontologies are listed in Table 2 below: 

Prefix  Full Namespace  Ontology 

iso:  http://ontology.eil.utoronto.ca/ISO37120.owl#  IRIs for each 

ISO37120 indicator 

gci:  http://ontology.eil.utoronto.ca/GCI/Foundation/GCI‐

Foundation.owl# 

GCI Foundation 

ontology 

isos:  http://ontology.eil.utoronto.ca/GCI/ISO37120/Shelters.owl#  The ISO37120 

shelter indicators 

definitions 

gcis:  http://ontology.eil.utoronto.ca/GCI/ Shelters/GCI‐

Shelters.owl# 

GCI Shelter ontology 



27 

 

sumo:  http://www.ontologyportal.org/SUMO.owl#  Suggested Upper 

Merged Ontology 

(SUMO) 

geo:  http://sws.geonames.org/  GeoNames 

sc:  http://schema.org/  Schema.org 

ic:  http://ontology.eil.utoronto.ca/icontact.owl#  International 

Contacts Ontology17 

om:  http://www.wurvoc.org/vocabularies/om‐1.8/  Ontology of units of 

Measure and 

related concepts 

(OM) 

Table 2 Prefixes used in the GCI ontologies 

2.2.4 IBM’s Scribe Ontology 

IBM’s Smart Cities project has developed the Scribe ontology to represent city knowledge that 

includes classes such as city organization and services, flow of events and messages, key 

performance indicators, stakeholders, departments, and resources, etc. (Uceda-Sosa et al., 2011). 

Figure 11 illustrates Scribe’s structure of representing message and event where a message is a 

subclass of event and also its subject. Scribe is also able to represent how city services area are 

linked to a city organization (e.g. Agency owns CityServiceArea). Cities can customize Scribe to 

represent different organizations, services in a city. As stated by Fox (2013), Scribe’s “OWL 

definitions of the classes and properties are provided but axiomatization of the definition is 

limited and so its use of foundational ontologies” (Fox, 2013). 

                                                 

17 ‘ic:’ is the prefix used for http://ontology.eil.utoronto.ca/icontact.owl 



28 

 

 

Figure 11 Scribe's model of a message, adapted from Uceda-Sosa et al. (2012) 

Scribe ontology was intended to capture “dynamic aspects of city services” (Uceda-Sosa et al., 

2011) and inter-departmental communication within a city. But limited information is provided 

for measuring performances of cities at city level. Indicator consistency analysis based on Scribe 

ontology becomes difficult since no indicator definitions nor relations between Scribe ontology 

and indicator definitions have been provided. 

2.2.5 PAS 182 Smart City Concept Model 

Publicly Available Standards (PAS) 182 is a document developed by BSI Group that defines a 

smart city concept model (SCCM) to increase interoperability of data across all sectors for a city. 

Sectors propose different terminology and model that creates difficulties when sharing data and 

knowledge across sectors. The SCCM provides a framework that creates a structure and 

classifies information and link datasets across sectors within a city (BSI, 2014). The SCCM 

includes Concepts such as Event, Object, Person, Organization, and Place. 

SCCM contains a set of views which illustrates a scenario where data is shared in a city with a 

portion of classes and properties. For example, Figure 12 below shows a view of Item. As stated 

in BSI (2014), “an Item might be an Object such as a lamp post, a building, or a road, but an 

Item might also be an Organization, … a Person, … or a Community, …” (BSI, 2014). The class 

Item is also associated with a Place and a State such as temperature in a room. 

 



29 

 

Some metadata concepts are not covered by the SCCM. For example, Time, validity, and trust 

are not concepts included in the SCCM. Therefore it does not have the ability to describe the 

metadata and provenance information of datasets.  

 

Figure 12 PAS 182 SCCM Item View, adapted from BSI (2014) 

 SCCM is ideal for integration of information across sectors. But concepts provided in SCCM are 

generally high level concepts such as Item and Objects. More specific concepts are needed when 

representing indicator definitions in order to perform indicator consistency analysis. 

2.2.6 City Anatomy Ontology 

As part of the City Anatomy model introduced in section 2.1.2, City Protocol developed a 

foundation ontology in OWL, City Anatomy Ontology (CAO), that represents “common 



30 

 

vocabulary and formal knowledge model linked to the City Anatomy model” (CPA, 2016). This 

foundation ontology will be extended for each domain according to domain specific knowledge. 

The ontology has been designed to represent the city from both a systems science perspective 

and perspective of dynamic processes of a city. A set of competency questions such as: which 

are the systems in a city, what is the structure of each system, and how does each system 

relate/interact with other systems, are proposed for the CAO to answer. 

As described in section 2.1.2, City Protocol defined three systems of evaluating a city’s 

performance as: structure, society, and interactions between society and structure. The city is a 

‘system of systems’, it is “a set of relationships between multiple layers of a relatively large and 

permanent human settlement, with an administrative and legal status supported by local laws” 

(CPA 2016). Figure 13 below depicts core entities and their relationships of CAO. 

 

Figure 13 Core Concepts of CAO, adapted from CPA (2016) 

Indicators are represented in CAO as a general concept with classes such as City_indicator, 

Structure_indicator, etc, and are linked to OM concepts such as Quantity, Measure, and Unit of 



31 

 

measure. There are currently no specific definitions defined in CAO for each indicator described 

in section 2.1.2. Figure 14 depicts indicator concepts from CAO. 

 

Figure 14 CAO Indicator Concepts, adapted from CPA (2016) 

2.3 Consistency 

It is important to evaluate the consistency of published indicator data to ensure it follows the 

definition of the indicator. Otherwise the indicator data has no value when comparing 

performance between cities (i.e., transversal) and to data published for the same city during 

another period of time (i.e., longitudinal). When comparing indicators their value and supporting 

data must be consistency with each other. For example, the indicators are measuring the same set 

of population and are using the same units. In this section we review a number of consistency 

evaluation tools. 



32 

 

2.3.1 Database Consistency 

Currently, the majority of city indicator data is published in the form of spreadsheets and stored 

in statistical database management system (Fox, 2015a). In the context of database, a consistency 

check is usually done by ‘DBCC CHECKDB’ command in SQL Server which verifies the 

logical and physical integrity of the objects in a database (Mariuta, 2014). Etzion & Dahav 

(1998) described a model that uses high-level abstractions called stabilizer types denoting 

behavior patterns occurred during database update exceptions for consistency restorations. This 

approach provides high-level language to the exception handling portion of the application and 

substantially reduces the required programming (Etzion & Dahav, 1998). Cong, et al. (2007) 

employed a class of conditional functional dependencies (CFDs) proposed in Bohannon, et al. 

(2007) to capture inconsistencies and errors of the data. Algorithms were also provided to 

improve consistency of the data. One algorithm introduced was able to automatically compute a 

repair of the inconsistent database that satisfies the given set of CFDs. Another algorithm 

incrementally finds a repair in response to updates to a clean database. 

A good practice for a database administrator is to run a consistency check on a regular basis. 

This is to ensure that both data and structure in the database is free of contradiction. Most cities 

publish their indicator data as spreadsheet on the web (Fox, 2015c). As stated previously, the 

goal is to represent indicator data in a Semantic Web compatible format eventually by using 

ontologies. Cities create instances when an indicator and its supporting data is published (Fox, 

2015c) and these instances play role of data as in the relational database world (Martinez-Cruz, 

Blanco, & Vila, 2011). As with data in a relational database, consistency checking process is also 

an important aspect for any information represented with ontologies. Next we review a number 

of ontology consistency evaluation systems. 

2.3.2 Ontology Consistency 

Ontology consistency checkers verify if an ontology is logically consistent by verifying if there 

is at least one model that satisfies all axioms in the ontology. Within an ontology, its class 

definitions (TBox) and individual assertions (ABox) must be free of contradiction in order to be 

consistent. A class must have at least one instance in order to be consistent (concept 

satisfiability) (Grau, 2006). As stated by Horridge et.al (2009), “An inconsistent ontology, is an 

ontology that, by virtue of what has been stated in the ontology, cannot have any models, and 



33 

 

entails everything.” (Horridge, Parsia, & Sattler, 2009). For example, if class ‘All_male_shelter’ 

and ‘All_female_shelter’ are disjoint classes, then a class ‘All_male_female_shelter’ that is 

subclass of both ‘All_male_shelter’ and ‘All_female_shelter’ is unsatisfiable since there can be 

no instance of it that maintains the consistency of the ontology. An individual is consistent with 

respect to a class if it is an instance of that class in every model of the ontology. For example, the 

class ‘Homeless_person’ has a property ‘livesIn’ with all values restricted to instances of 

‘Homeless_shelter’. 

'Homeless_person' ⊑	∀livesIn.'Homeless_shelter' 

livesIn(john,houseX) 

House(houseX) 

'Homeless_person'(john) 

If we assert that ‘john’ is a homeless person and lives in ‘houseX’ which is an instance of the 

class House. This is a contradiction since ‘john’ cannot be an instance of the class 

‘Homeless_person’. 

In the following sections we review some of the existing ontology consistency evaluation system 

and discuss whether these systems are suitable for consistency evaluation for Global City 

Indicators. 

2.3.3 ConsVISor 

ConsVISor is an web-based consistency checker that evaluates the general consistency of an 

RDF or DAML+OIL ontology with Prolog axioms. ConsVIsor is able to detect contradictions 

between classes where no instances can be created for that class. E.g. Baclawski, et al. (2001) 

presented an example where a class ‘Amphibian’ was unable to be instantiated due to the fact 

that it is a subclass of two disjoint classes ‘LandVehicle’ and ‘WaterCraft’. Figure 15 shows the 

architecture for ConsVISor (Baclawski, et al., 2002). 



34 

 

 

Figure 15 ConsVISor Architecture, adapted from Baclawski, et al. (2002) 

ConsVISor can also detect inconsistency caused by cardinality restriction. Baclawski, et al. 

(2002) had demonstrated an example where it was entailed that the number of instances of a 

class is smaller than that of another class, but simultaneously greater than twice as much. 

Baclawski, et al. (2002) has shown that #Y ≥ #X ≥ 2#Y where “#X and #Y represents the 

number of instances of class X and class Y respectively.  This implies that class X is either 

empty or has an infinite number of instances” (Baclawski, et al., 2002). 

ConsVISor also checks potential errors such as spelling mistakes in class names. Since classes 

with spelling mistakes in class names can still be inferred as a class thus it is both syntactically 

correct and semantically consistent. ConsVISor will print warning messages in this case. 

ConsVISor “assumes that if two resources have different names and are not explicitly specified 

to be the same, then they are distinct resources.” (Baclawski, et al., 2002) 

ConsVISor is a consistency checker that aimed to ensure consistency within a single ontology. It 

provides error and warning messages when an ontology is self-contradicting and inconsistent 

with itself. But it does not have the ability to check consistencies cross two or more ontologies. 

This was discussed in section ‘Conclusions and Future Work’ of Baclawski, et al. (2002). The 

aim was to ensure consistency between smaller ontologies when they are used to merge into a 



35 

 

larger and complex ontology. ConsVISor18 can be accessed through a demonstration version but 

as of November 2015 the webpage remains inaccessible after an ontology has been submitted. 

2.3.4 SimpleConsist 

SimpleConsist checks the consistency of instance data with respect to an ontology described in 

OWL. It is a plugin consistency checker within the Dacura data curation system (Mendel-

Gleason, et al., 2015). It focuses on checking the consistency based on the structure of the 

ontology such as class hierarchy, properties associated to each class, domain and range 

restriction. 

SimpleConsist checks for inconsistencies within an ontology by checking the set of constraints 

are satisfied at a triple-store state S. The state alters to S’ when triples are updated or inserted 

into the triple-store. If constraints do not hold for S' then SimpleConsist can roll-back to the 

previous state S. Counter-example witnesses L are provided to the failure of the constraints. 

These witnesses are realised as resources not conforming to the constraints. Failure to provide a 

witness of the negation of the constraint is viewed as success.  A portion of the failure witnessing 

predicates are listed in the Table 3 below. 

¬ duplicateClasses(L)   No two classes may have the same name. 

¬ orphanSubClasses(L)   No subclass can be a child of an unspecified class. 

¬ invalidRange(L)  Ranges must refer to classes or types, and must be unique.

¬ duplicateProperties(L)   No two properties have the same name. 

¬ orphanSubProperties(L)   No Subproperty is the child of an unspecified property.  

¬ orphanProperties(L)  Instances must not use properties which are not defined. 

Table 3 List of constraints, adapted from Mendel-Gleason, et al. (2015) 

                                                 

18 ConsVISor: http://vistology.com/OLD/www/consvisor.shtml 



36 

 

SimpleConsist provides constraints to ensure that large-scale data are consistent in each state and 

ensure that the data remain consistent with every update. 

2.3.5 Semantic Law Checker with Vehicle Ontology 

Defined a framework that connects linguistic and conceptual problem in law-text to semantic 

deficiencies such as polysemy, endophora, exophora, under specification, inconsistency, and 

false agreement, etc. The semantic deficiencies including inconsistencies were identified through 

a Vehicle ontology written in OWL that complies with official documents such as the Brazilian 

Traffic (law) Code (CTB), National Traffic Code (Brazil) when formalizing definitions for 

concepts such as vehicles, automobile, electrical vehicles, propulsion type, etc. Logical 

inconsistencies for vehicle concepts were identified in law-text, for example, in CTB, an 

“Electrical vehicle” was defined both disjoint and subsumed by an “Automotor vehicle” (Freitas, 

Candeias Jr, & Stuckenschmidt, 2011). 

 

Figure 16 Classes and Properties of Vehicle Ontology, adapated from Freitas et al. (2011) 

A semantic law checker shown below was envisaged with its goal set to providing services such 

as checking contradictions between new laws and old ones (Freitas, Candeias Jr, & 



37 

 

Stuckenschmidt, 2011). As the goal of this paper was to outline a framework of semantic 

deficiencies in law codes which from an ontological aspect, and many of the semantic 

deficiencies defined were modelling problems which can be captured with a well modeled 

ontology. Inconsistencies buried in the concepts of the ontology, for example, is the definition of 

an electrical vehicle in 2010 consistent with itself in 2030, cannot be identified. 

 

Figure 17 Architecture of a semantic law checker, adapted from Freitas et al. (2011) 

2.3.6 Protégé OWL Reasoner 

Protégé plug-in reasoners such as Pellet (Sirin, et al., 2007), FaCT++ (Tsarkov & Horrocks, 

2006), and HermiT (Shearer & Motik & Horrocks, 2008) provide reasoning services for 

ontologies represented in OWL. Reasoning services including consistency test, satisfiability test, 

and classification are performed by constructing models of the ontology that satisfy all axioms in 

the ontology with completion rules. If there exists at least one model of the ontology that 

satisfies all the axiom the reasoner will terminate and conclude that the ontology is consistent. 

Otherwise, the reasoner will fail if a contradiction is detected indicating that the ontology is 

inconsistent. City indicators represented using ontologies need to be first evaluated to determine 

if the ontology and imported dependencies are logically consistent. 

HermiT 

HermiT is an OWL reasoner that checks if an ontology written in OWL is consistent.  



38 

 

HermiT “implements a ‘hypertableau’ calculus which reduces the number of possible models 

that need to be considered. HermiT also incorporates the ‘anywhere blocking’ strategy, which 

limits the sizes of models which are constructed” (Shearer & Motik & Horrocks, 2008). 

Pellet 

Pellet is an open-source Java OWL-DL reasoner with tableau based decision procedure that 

supports reasoning with individuals, user-defined datatypes, and debugging ontologies. It is 

compatible with Jena and OWL API libraries. Pellet provides the following reasoning services 

(Sirin, et al., 2007): 

 “Consistency checking, which ensures that an ontology does not contain any 

contradictory facts.  

 Concept satisfiability, which checks if it is possible for a class to have any instances.  

 Classification, which computes the subclass relations between every named class to 

create the complete class hierarchy.  

 Realization, which finds the most specific classes that an individual belongs to” (Sirin, et 

al., 2007) 

FaCT++ 

FaCT++ is a reasoner based on FaCT (Fast Classification of Terminologies) which is a DL 

classifier with ability of satisfiability and subsumption test using tableaux algorithm (Horrocks, 

1999). 

OWL reasoners reviewed above are capable of evaluating the logical consistency and 

satisfiability of an ontology. City indicators are represented with ontologies such as GCI 

ontologies which were evaluated to be logically consistent (Fox, 2015b). However, information 

regarding types of inconsistency of city indicators need to be evaluated based on definitions of 

city indicators which is outside of reasoning services provided by the reasoners. As we will see 

in the end of the chapter, there are also cases of inconsistency that an OWL reasoner is not able 

to detect such as when performing transversal and longitudinal consistency analysis. Evaluation 



39 

 

of city indicator inconsistency with respect to indicator definition, city and theme specific 

knowledge is outside the scope of OWL reasoners that is mandatory for city indicator 

consistency analysis. 

2.3.7 Information Consistency 

Information consistency often refers to “text, images, and other content remaining the same 

regardless of how and where they are presented” (Costello et al., 2007). In addition to content of 

a document, inconsistencies may also occur from the following aspects of a document: 

 Dependency: a document that either 1) is an exact copy of, 2) or has a quotation from a 

source is said to be a dependent of the source document. The content of the document 

may be inconsistent with the source when the source is modified and if there is no link 

provided between the document and the source.  

 Revision: a revised document is derived from its original version. Inconsistencies may 

occur when changes are detected in the document’s meta-information.  

 Provenance: who was the creator of the document and what were the activities that 

generated the document. For example, two versions of documents are inconsistent if 

generated with different method.  

 Time varying information: a piece of information may no longer be valid outside a 

certain time interval. 

 Trust information: information that represents whether a document can be trusted. One 

may ask following questions regarding trust information of a document: Can the creator 

of the document be trusted? Does the document have dependencies and can they be 

trusted? Is the author an expert in the field? E.g. a piece of information cannot be trusted 

if the agent who generated the information is not trusted within the field where the 

information is published (Fox & Huang, 2003). 

Traditional web contents are presented in non-machine-readable formats such as HTML, 

spreadsheets, or PDF which leave large amount of copies of documents on the web. When the 

source information is modified, revised or recreated, all copies of document containing the 



40 

 

information must be modified separately which leads to content inconsistency if not all 

documents are updated (Costello et al., 2007). Instead of find and reject inconsistent content 

completely, Hunter & Konieczny (2005) suggested approaches that will measure ‘inconsistency’ 

of a piece of information by measuring how much contradictions are involved (Hunter & 

Konieczny, 2005). The result can be used to aid applications involved with belief revision, where 

a new piece of information is perceived and a decision of whether it should replace the old belief 

needs to be made, belief merging, and negotiation. As stated in Hunter & Konieczny (2008), two 

approaches have been proposed previously. The first approach is to determine the minimum 

amount of statements mandatory to create inconsistency in a knowledge base. This amount is 

inversely proportional to the measure of inconsistency of the knowledgebase. Second approach is 

to measure the proportion of statement involved in the inconsistency within a knowledgebase. 

Inconsistency of knowledgebase increases when more statements are involved (Hunter & 

Konieczny, 2006). In Hunter & Konieczny (2006), a third approach that uses game theory 

technique (i.e., Shapley value) based on the previous approaches was proposed. This approaches 

measures inconsistency for each statement rather than the entire knowledgebase. 

Information about evolution of the document is also difficult to track. For example, information 

about the user who modified the document and method used to generate new data is lost during 

process of updating the web document. Meta-information of the published data such as the 

identity of the publisher, date of publication, and other provenance information can also be 

tracked via the PROV ontology19 (Belhajjame et al., 2012). Revisions and dependencies of the 

document are linked through property such as pr:wasDerivedFrom which allow users to track the 

source of documents. 

Information about source of information, validity and trust can be represented with Knowledge 

Provenance (KP) proposed by Huang & Fox (2004). For any piece of information, a truth value 

of True, False or Unknown can be assigned. In addition to truth value, KP also is interested in 

the agent who asserted this piece of information, if the agent can be trusted, and does the 

information depend on another piece of information from a trustworthy source. Four levels of 

knowledge provenance models are defined in the order of most certain KP to most uncertain KP. 

                                                 

19 ‘pr:’ is the prefix used for http://www.w3.org/ns/prov 



41 

 

The first and foundation level is static KP, which a truth value does not change over time. The 

model has been formally represented as an ontology20 (Fox & Huang, 2003). Main classes in the 

static KP ontology are propositions (kp:KP_prop), documents (kp:Document), information 

sources (kp:InfoSource), trust relations (kp:TrustRelation), and signature status (kp:SigStatus) 

that can be either ‘Verified’, ‘Failed’, or ‘NoSignature’. The classes and properties are shown in 

Figure 18. Other levels are: dynamic KP, where validity of information changes overtime; 

uncertain KP; and judgement based KP that is based on subjective judgement (Fox & Huang 

2005). Each level of KP model is an extension that builds upon its previous levels. 

                                                 

20 ‘kp:’ is the prefix used for http://ontology.eil.utoronto.ca/kp.owl 



42 

 

 

Figure 18 Classes and Attributes in KP, adpated from Fox & Huang (2003) 

City indicators measure a city’s properties with values. Value of a city indicator is represented 

with a measure (Fox, 2013) that carries information such as number, unit of measure, and meta-

information of the measure. In addition to measurement consistency (e.g. numerical value and 

units are consistent), consistency of indicator values also need to be evaluated based on 

provenance, trust and validity information. As discussed in section 2.2.2, GCI Foundation 



43 

 

ontology implemented PROV and KP to represent provenance, trust and validity information of 

city indicator values. The following information are represented by GCI Foundation ontology: 

 Agent who published the indicator value 

 Time that the indicator value was published 

 Activity that generated the indicator value 

 Supporting data that the indicator value was derived from 

 Time interval that indicator value effective 

 Trust value of the publisher assigned by another agent 

2.4 Summary 

We have reviewed a number of city indicator standards and their representations. From these 

standards only ISO 37120 and City Anatomy indicators are formally represented in OWL with 

the GCI ontologies. Thus automated city indicator consistency analysis becomes possible for city 

indicators that are represented using the GCI ontologies. Consistency checkers and reasoners 

such as Hermit and Pellet are able to infer if an ontology is logically consistent and if an instance 

satisfies its class definition. But when evaluating city indicators consistency, there are two types 

of inconsistencies that are not detected by standard consistency checkers. 

Inter-indicator inconsistencies may arise when performing longitudinal or transversal analysis. 

Consider a simple example when the same shelter indicator for two cities (e.g., Toronto and New 

York City) are to be compared. Separately, Toronto could publish its indicator data and city 

knowledge depicted in the following figure: 



44 

 

 

Figure 19 Published data and city knowledge Toronto 

trt_homeless_shelter_2013 is an instance of Toronto’s homeless shelter class (i.e., 

Toronto_homeless_shelter, which is a subclass of the Homeless_shelter class which represents 

the definition of a homeless shelter defined by ISO 37120. A standard consistency checker will 

determine whether Toronto_homeless_shelter class is subsumed by the Homeless_shelter class, 

and whether trt_homeless_shelter_2013 satisfies the Toronto_homeless_shelter class definition. 

Now if we merge the indicator data and city knowledge of New York City we have: 

 

Figure 20 Merged indicator data and city knowledge 



45 

 

The standard consistency checker will verify each of the instances satisfy their corresponding 

definition of their city’s shelter class, and that the city shelter classes are subsumed by the 

common Homeless_shelter class. But it will not compare Toronto_homeless_shelter class to 

NYC_homeless_shelter class. This is where transversal inconsistency may arise, namely each 

city is measuring different types of shelters. 

The second type of inconsistency is intra-indicator inconsistency. If we have the derivation tree 

for a single indicator, there may inconsistencies within the tree.  For example, the year the 

numerator was determined may be different than the year the denominator was determined. 

The following identifies the general types of inconsistencies that may arise in both the inter and 

intra-indicator cases. They will be defined in more detail in subsequent chapters. 

 Place inconsistency: geographical concepts of an indicator’s definition are inconsistent. 

E.g. Toronto publishes an indicator where the homeless population was drawn from 

downtown area instead of the entire city as per ISO 37120 definition 

 Temporal inconsistency: inconsistency is caused by temporal concepts such as temporal 

unit. E.g. City 1 publishes an indicator that measures city’s performance monthly while 

city 2 measures the same performance annually.  

 Population definition (Type) inconsistency: inconsistencies occur within the concepts that 

define the characteristics of the measured population. ISO 37120 defines homeless person 

as person who lives outdoor or in an emergency homeless shelter and a city’s definition 

of homeless person involves person who lives in a treatment facility as well. Therefore, 

the city’s definition of homeless person is inconsistent with ISO 37120 standards due to 

the additional ‘treatment facility’ concept included by the city’s definition. 

Finally, when standard consistency checkers detect an inconsistency, they do not provide 

indicator specific explanations as to the nature of the inconsistency.  Is it unit of measure 

mismatch, or a temporal mismatch? Knowing the nature of the inconsistency is important.



 

46 

Chapter 3  
Definitional Consistency Analysis 

 Definitional Consistency Analysis 

The ultimate goal of the PolisGnosis project is to determine the root cause of performance 

variations, whether they be longitudinal or transversal. But before we can perform root cause 

analysis, we need to determine whether the instance of an indicator reported by a city is 

consistent with the indicator’s definition.  If the indicator is inconsistent, root cause analysis is 

irrelevant because the data cannot be trusted nor compared to other cities.  In this chapter we 

define a process for determining whether the city specific definition of an indicator and the 

derivation of its values published by a city is consistent with the indicator’s definition. 

A city's published indicator data can be inconsistent or potentially inconsistent with the 

indicator's definition. A city indicator's data is definitional inconsistent if it includes 

concepts/instances that are inconsistent with the indicator’s definition, e.g. city's definition of 

homeless person. A city's indicator data may be potentially inconsistent with the indicator's 

definition if there is a possible interpretation of the indicator data that is inconsistent with the 

definition. For example, suppose that the homeless population of Toronto was counted across a 

subset of neighborhoods within Toronto. It is unknown whether these neighbourhoods contain all 

of the homeless. When a city publishes the data used to derive a specific indicator, it creates a set 

of instances that represent the indicator’s value and supporting data. The published data will 

include instances of foundational and theme specific ontologies, and city specific ontologies such 

as Toronto’s definition of homeless person (Fox, 2015c). 

Published indicator data and indicator’s definition are represented as graphs where nodes 

represent instances, classes or literals (e.g., integers, strings), and arcs represent properties. Let Si 

be the graph that represents the indicator data and Di be the graph that represents the indicator’s 

definition for indicator i. Each node from Si corresponds to a node from Di in the sense that 

published city indicator data is an instance or subclass of the corresponding node in the 

indicator’s definition. The correspondence between nodes of Si and Di is represented by Cor(mij, 

nij) where mij and nij are nodes of Si and Di respectively as shown in Figure 21. Table 4 and Table 

5 list the notation used in definitional consistency analysis. 



47 

 

 

Figure 21 Published indicator data Si and definition Di 

 

Table 4 Notation of Definition and Theme Specific Knowledge 

Indicator Definition and Theme Specific Knowledge 

 Let I be the set of all indicators for a particular theme 
 Let D be the set of all indicator definitions for a particular theme 
 Let OF be the Foundation ontology used in D 
 Let OT be the Theme Specific Ontology used in D 
 Let O = OF union OT 
 Di is the definition of indicator i ∊ I 
 Di is composed of a set of arcs Ai and nodes Ni 
 Ai ⊆ prop(O) where prop(O) is the set of properties defined in O 
 Ni ⊆ Class(O) ∪ Indiv(O) ∪ Literal(O) where Class(O) is the set of classes 

defined in O, and Indiv(O) is a set of individuals in O, and Literal(O) is a set 
of literals in O. 

 Nclass
i ⊆	Class(O) ⊆	Ni  



48 

 

 

Table 5 Notation of Indicator Data and City Specific Knowledge 

We represent that two nodes are connected by an arc (property) as Tri(x, ait, y),  where both x 

and y can be nodes mij ∊ Mi, civ ∊ Ci, or nik ∊ Ni, while ait is a property from Ai. The predicate 

Tri(x, ait,y) represents the triple with x as the subject, ait as a binary property, and y as an object. 

x and y can be classes, instances or literals. We use the predicate Equal(x,y) to indicate that x 

and y are the same class or individual. We use the predicate Type(x,y) to specify that x is an 

instance of y (or subclass of y) where x is an individual and y is a class. 

Before consistency can be analysed, we need to determine for each node in Si, which node it 

corresponds to in definition Di. The correspondence between nodes mij ∊ Mi from graph Si and 

nik ∊ Ni from graph Di are determined as follows: 

For any mij ∊ Mi in Si and nik ∊	Ni in Di, Cor(mij, nik) is true if: 

 There exist a direct rdf:type (instanceOf) relationship between the instance mij and 

definition class nik, or 

 There exist a direct rdf:type relationship between the instance mij and a class niv where niv 

is a subclass of nik, i.e., niv ⊑nik, or 

 There exist a node mix that corresponds to niy, i.e., Cor(mix, niy), which are linked to mij 

and nik via the property ait respectively.  

o E.g. an indicator instance 15.2_trt_2013 published by Toronto corresponds the its 

definition class iso37120:15.2. The instance 15.2_trt_2013 links to the instance 

geo:Toronto via the property gci:for_city and the definition class iso37120:15.2 is 

Published City Indicator Data and City Specific Knowledge 

 Let S be the set of all published indicator data for a particular theme 
 Let OC be the ontology used to define City Specific Knowledge used in S 
 Let Si be the graph that represents the data used to derive indicator i 
 Si is composed of a set of attributes A’i, nodes Ci nodes Mi, and nodes Ni  
 A’i is a set of arcs (properties) in Si 
 Mi is a set of nodes (individuals) in Si 
 Ci ⊆ Class(OC) ∪ Indiv(OC) ∪ Literal(OC) where Class(OC) is the set of classes 

defined in OC, and Indiv(OC) is a set of individuals in OC, and Literal(OC) is a set of 
literals in OC 

 Cclass
i ⊆ Class(OC) ⊆ Ci  



49 

 

linked to gci:City class via the same property, then geo:Toronto corresponds to 

the class gci:City. 

 

Defintion 1 Correspondence 

The starting point of correspondence should occur on the indicator value mi0 published by a city 

and the indicator class ni0 from its definition. For example, the instance ‘15.2_trt_2013’ 

published by Toronto corresponds with the definition class iso37120:15.2 such that 

Cor(‘15.2_trt_2013’, iso37120:’15.2’) is true. As shown in Chapter 2, an om:Quantity class (e.g. 

gci:GCI_Quanity, gci:Population_size, etc.) is linked to om:Measure and om:Unit_of_measure in 

ISO 37120 indicator definition. Classes such as om:Measure are reused throughout the 

indicator’s definition therefore correspondence is not unique between nodes in Si and such 

classes in Di. For example, let miy be the homeless population size value and mix be the value of 

indicator ’15.2_trt_2013’ where both are instances of om:Measure (nik). Thus both Cor(mix, nik) 

and Cor(miy, nik) are true. 

All nodes nik  Ni that exist in the indicator’s definition Di should have a corresponding node 

mij Mi from Si such that Cor(mij, nik) is true. In the case where there is no correspondence 

detected for a definition class nik, there are missing data from the set of indicator data published 

by the city according to the indicator’s definition. We specify the following inconsistency type to 

indicate that published indicator data Si is inconsistent in terms of correspondence if for any 

corresponding nodes mij  Mi and nik  Ni, there exists a class niy that is linked to nik via property 

ait where there is no node mix linked to mij that corresponds to niy. 

Predicate Cor(mij,nik) 

∀mij nik niv 

Type(mij, nik)	∨		

(Type(mij, niv) ∧	Subclass(niv, nik)) ∨		

∃mix niy ait (Cor(mix,niy)	∧ Tri(mix,ait,mij ) ∧Tri(niy,ait,nik)) 

⊃ Cor(mij,nik ) 



50 

 

 

Defintion 2 CI. Correpondence Inconsistency 

In the remainder of this section, we define the types of inconsistencies that may arise in indicator 

data. 

3.1 Type Inconsistency 

3.1.1 TC1. Class Type inconsistency 

Two corresponding classes are type inconsistent if it is not the case that the two classes are equal, 

nor there exists a property owl:equivalentClass or owl:subclassOf between the classes, or one 

class is not subsumed by another class. We define a predicate Subclass(x, y) to indicate that class 

x is subsumed by class y.  

Therefore, a class x is type inconsistent with class y if x satisfies the following: 

 x is not equal to, an equivalent class, nor a subclass of y, or 

 x is not subsumed by y. 

We use the function card(x, ait) to specify the cardinality restriction of property ait on x where x 

is a class or individual. We define the following definition TC1 to state that class x is type 

inconsistent with its corresponding class y. 

CI. Correspondence Inconsistency 

∀m	nik 

Cor൫mij,nik൯∧∃niy	ait ቂTri൫nik,	ait,niy൯⊃∃mix	 ቀTri൫mij,	ait,mix൯∧Cor൫mix,niy൯ቁቃ 

⊃	CI൫mij,nik൯ 



51 

 

 

Defintion 3 TC1. Class Type Inconsistency 

For example, let x be the class that represents Toronto’s definition of homeless person and y be 

the definition of homeless person defined by ISO 37120. ISO 37120 defines a homeless person 

as a person who lives outdoors or in a homeless shelter. But cities may have different definitions 

for specific types of homeless shelter. In this case, a Toronto homeless person is defined to live 

in either an emergency homeless shelter, a Violence Against Women shelter, or a treatment 

facility (City of Toronto, 2013) which we represent as x1, x2, and x3 respectively. Assume x1 and 

x2 are subclass of y. Since x and y are distinct classes and there are no owl:equivalentClass nor 

owl:subclassOf relation asserted in between, we need to verify that x is subsumed by y. Let x’ be 

x1 or x2 or x3, the following predicates holds true 

Triሺx, gcis: livesIn, x′ሻ 

	Xᇱ ൌ x1 ∨ x2 ∨ x3 

Triሺy, gci: livesIn, y′ሻ 

The cardinality restrictions are ‘exactly 1’ for values of gci:livesIn for both x and y thus satisfies 

the condition  

,ݔሺ݀ݎܽܿ ݃ܿ݅: ሻ݊ܫݏ݁ݒ݈݅ ൌ ,ݕሺ݀ݎܽܿ	 ݃ܿ݅:  ሻ݊ܫݏ݁ݒ݈݅

Then we must verify if x’ and y’ are equal classes or x’ is a subclass of y’. x1 and x2 are 

subclasses of y’ thus are type consistent with y’. x3 is neither an equivalent nor a subclass of y’, 

TC1. Class Type Inconsistency 

∀x	y		 

Corሺx, yሻ ∧ ൫Equalሺݔ, yሻ ∨ Triሺx, owl: equivalentClass, yሻ

∨ Triሺx, owl: subclassOf, yሻ൯ ∨ 

Subclassሺx, yሻ 

⊃ 	TC1ሺx, yሻ 



52 

 

thus it is type inconsistent with y’. Since Subclassሺx′, yᇱሻ thus Subclassሺx, yሻ is true therefore 

TC1ሺݔ, yሻ is also true. Thus we can conclude that class x is type inconsistent with class y. 

3.1.2 TC2. Instance Type Inconsistency 

The most basic definitional consistency of a published city indicator is to verify whether the 

indicator and its supporting data are instances of classes that define ISO 37120 indicator. That is, 

instance type inconsistency verifies that if the instances that make up a city's indicator are an 

instance of the same class, an equivalent class, a subclass of concepts defined in ISO37120, or 

have all necessary properties with values that satisfy the restrictions of those properties defined 

in the ISO 37120 definition (Fox, 2015b). 

City published indicator data are represented by set of instances Mi of classes Ni and Ci in graph 

Si that corresponds to classes Ni from indicator’s definition Di. Let mij, civ, and nik be nodes of 

Mi, Ci, and Ni respectively, where mij is an instance, civ and nik are classes. mij is instance type 

inconsistent if: 

 There does not exist a direct rdf:type relation between mij and nik 

 mij is not an instance of nik, and 

 mij is an instance of civ, and civ is type inconsistent with nik 

 

Defintion 4 TC2. Instance Type Inconsistency 

For example, let mij be the 15.2 indicator value published by Toronto, nik be the class 

iso37120:’15.2’ where Cor(mij,nik). Assuming there is a direct rdf:type such that Tri(mij, rdf:type, 

nik), or Tri(mij, rdf:type, civ) and civ is the same class, equivalent class or a subclass of nik, i.e., 

TC2. Instance Type Inconsistency 

∀݉	݊		 

Cor൫݉, ݊൯ ∧ Type൫݉, ݊൯ ∧ 

∃ܿ௩ 	ቀType൫݉, ܿ௩൯ ∧ TC1ሺܿ௩, ݊ሻቁ 

⊃ 	TC2൫݉, ݊൯ 



53 

 

iso37120:15.2, then mij is instance type consistent nik. In case shown in Figure 22, given that 

Cor(mij,nik) and mij is an instance of civ. The class civ and nik are linked to c’iv and n’ik 

respectively via property ait. The instance mij is type inconsistent with nik if the class civ is 

inconsistent with nik, i.e., TC1(civ,nik) is true. 

 

Figure 22 Evaluation of TC2(mij,nik) consistency given that Cor(mij, nik) 

3.1.3 TC3. Property Inconsistency 

An instance mij ∊ Mi is potentially inconsistent with its corresponding definition class nik ∊ Ni if 

there exist a necessary property ait defined in nik that satisfies one of the following conditions: 

 ait does not exist in mij, or 

 the cardinality of ait for mij does not satisfy the cardinality restriction defined in nik, or 

 mij does not satisfy the value restriction of ait defined in nik 

We introduce Nec(ait, nik) to indicate that ait is a necessary property defined in class nik. The 

predicate CardSat(mij, nik, ait) indicates that the instance mij satisfies the cardinality restriction of 

the property ait defined by class nik. 



54 

 

 

Defintion 5 TC3. Property Inconsistency 

Continuing with the example in 3.1.2, for mij to be consistent with nik, the values for each 

property of mij must be type consistent with the value restriction of the properties defined in nik. 

The class iso37120:15.2 has a property gci:for_city with a cardinality restriction of ‘exactly 1’ 

and its value restricted to class gci:City. Consider the following statements where ait is the 

gci:for_city, mix is the instance geo:Toronto, and niy is the class gci:City. The placename instance 

geo:Toronto has a direct rdf:type relationship with gci:City.  

Tri൫݉, gci: for_city,݉௫൯ 

Tri൫݊, gci: for_city, ݊௬൯ 

Tri൫݉௫, rdf: type, ݊௬൯ 

Since mix is the only value of gci:for_city for mij, thus the cardinality of mij equals to the 

cardinality restriction of ‘exactly 1’ for nik. The predicate TC2(mix, niy) is false since mix is an 

instance of niy. Therefore, mij is type consistent with nik. 

 

TC3. Property Inconsistency 

∀݉	݊	݊௬ 

Cor൫݉, ݊൯ ∧ 	∃ܽ௧ 	ቂቀNecሺܽ௧, ݊ሻ ∧ Tri൫݊, ܽ௧, ݊௬൯ቁ

⊃ ∃݉௫ 	ቀTri൫݉, ܽ௧,݉௫൯ ∧ CardSat൫݉, ݊, a௧൯

∧ TC2൫݉௫, ݊௬൯ቁቃ	 

⊃ 	TC3൫݉௫, ݊௬൯ 



55 

 

 

Figure 23 Evaluation of TC2(mij,nik) inconsistency given that Cor(mij, nik), case 2 

In the case shown in Figure 23, given that Cor(mij,nik) where j,k=1…6, mi0 is type inconsistent 

(TC2) with ni0 if mi0 does not satisfy cardinality and value restriction for any property ait, or any 

node mij (j=1…6) is type inconsistent with nik(k=1…6) such that TC2(mi1,ni1) or TC2(mi2,ni2) or 

… or TC2(mi6,ni6). 

Therefore, an instance mij is type inconsistent with a definition class nik if it satisfies either TC2. 

Instance type inconsistency or TC3. Property inconsistency. 

 

Defintion 6 TC. Type Inconsistency 

TC. Type Inconsistency 

∀݉	݊  

,2ሺ݉ܥܶ ݊ሻ ∨ ,3ሺ݉ܥܶ ݊ሻ 

⊃ ,ሺ݉ܥܶ ݊ሻ 



56 

 

 

3.2 Temporal Inconsistency 

City indicators measure a city’s performance during a specific time interval. Data that are 

believed to be true at the time they are gathered may be found incorrect during other time periods 

(Fox, 2013). Supporting data that are generated or effective outside the time interval of the 

indicator are not relevant and are therefore temporally inconsistent. For example, a 15.2 indicator 

value measured for Toronto in the year of 2013 is temporally inconsistent with its numerator 

(i.e., homeless population size) if it is generated outside the time interval of 2013 since a portion 

of the homeless population may have exited the homeless cycle already and have settled in a 

permanent resident location while other citizens might become homeless due to various reasons. 

An indicator value and its supporting data are represented as quantities and measures and are 

associated with a time interval. The quantities and measures of published indicator data must 

refer to the same time interval in order to be temporally consistent. That is, the published 

indicator value and supporting data Si contains individuals mij and mik, which are instances of 

class om:Quantity or om:Measure, are potentially temporally inconsistent if they refer to the 

different instances of ot:TemporalEntity. An individual mij is linked to an instance of 

ot:TemporalEntity inti via a property such as gci:for_time_interval, pr:generatedAtTime or 

kp:effective. We specify predicate Time(mij, inti) to identify the relation between an instance mij 

and the time interval inti as follows: 



57 

 

 

Defintion 7 Time 

3.2.1 T1. Non-Overlap Interval Inconsistency 

The first type of potential temporal inconsistency deals with non-overlapping intervals of 

instance mij and mik in Si. Indicator values and supporting data measured during two non-

overlapping time intervals (e.g., 2013 and 2016) are not comparable in terms of time since the 

validity of data do not agree during any time point within the time intervals of mij and mik. A 

time interval inti that does not overlap another interval int’i at any time point can be either before 

or after int’i (Allen, 1983).  

Any two instances of om:Quantity or om:Measure mij, mik ∊ Mi are potentially inconsistent if 

time interval measured by mij 

 is before the interval int’i used by mik, or 

 Is after the interval int’i 

We use Before(inti,int’i) and After(inti,int’i) to specify that inti is before and after int’i 

respectively. 

Predicate Time(mij,inti) 

∀݉	݅݊ݐ		 

ቀType൫݉, ൯ݕݐ݅݊ܽݑܳ:݉ ∧ Tri൫݉, gci: ,݈ܽݒݎ݁ݐ݊݅_݁݉݅ݐ_ݎ݂ ൯ݐ݊݅

∧ Typeሺ݅݊ݐ, :ݐ ሻቁݕݐ݅ݐ݊ܧ݈ܽݎ݉݁ܶ ∨ 

൬Type൫݉, ൯݁ݎݑݏܽ݁ܯ:݉

∧ ቀTri൫݉, pr: generateAtTime, ൯ݐ݊݅

∨ Tri൫݉, kp: effective, ൯ቁݐ݊݅

∧ Typeሺ݅݊ݐ, :ݐ  ሻ൰ݕݐ݅ݐ݊ܧ݈ܽݎ݉݁ܶ

⊃ 	Time൫݉,  ൯ݐ݊݅



58 

 

 

Defintion 8 T1. Non-Overlap Interval Inconsistency 

In the case where mij and mik are linked to inti and int’i, for example, represent the instance of 

interval 2013 and 2016 respectively. The following predicates are true.  

Time൫m,  ൯ݐ݊݅

Timeሺm,  ᇱሻݐ݊݅

Beforeሺ݅݊ݐ,  ᇱሻݐ݊݅

,′ݐሺ݅݊ݎ݁ݐ݂ܣ  ሻݐ݊݅

Given both inti and int’i are instances of ot:Interval, mij and mik satisfy the definition T1 and 

therefore are temporally inconsistent in terms of overlapping intervals, i.e., T1(mij,mik). 

This type of inconsistency is a potential temporal inconsistency since there are cases where the 

indicator intentionally measures data from different time intervals. For example, ISO 37120 city 

indicator 6.2:Percentage of Students Completing Primary Education: Survival Rate is defined as 

“the total number of students belonging to a school-cohort who complete the final grade of 

primary education (numerator) divided by the total number of students belonging to a school-

cohort, i.e., those originally enrolled in the first grade of primary education (denominator)” (Fox, 

2014). Its numerator measures a population of students from a year that is after the population 

measured by the denominator. 

T1. Non-Overlap Interval Inconsistency 

∀݉	݉	݅݊ݐ	݅݊ݐᇱ 

	ܶypeሺ݅݊ݐ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ ∧ ܶypeሺ݅݊ݐᇱ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ 	∧ Time൫m, ൯ݐ݊݅

∧ Timeሺm, ᇱሻݐ݊݅

∧ ൫Beforeሺ݅݊ݐ, ᇱሻݐ݊݅ ∨ Afterሺ݅݊ݐ,  ᇱሻ൯ݐ݊݅

⊃ 	T1൫݉,݉൯ 



59 

 

3.2.2 T2. Interval Equality Inconsistency 

In order for instance mij to be temporally consistent with mik, the time intervals for mij and mik 

should be equal. The instance mij and mik are potentially inconsistent if the time intervals inti and 

int’i of mij and mik respectively are not equal. Similar to the case discussed previously, this is a 

type of potential inconsistency since there are indicators which take measures during different 

time intervals. Nevertheless, we must evaluate inti and int’i of mij and mik respectively to verify if 

the instances inti and int’i are equal. Specifically, given that inti and int’i are instances of the class 

ot:Interval, inti and int’I must have the same beginning and end. As described in owl-time, an 

interval inti has a beginning and end which are both instances of class ot:Instant (Pan & Hobbs, 

2004). Interval inti is equal to int’i if both the instant of both the beginning and end are equal. We 

specify interval inti and int’i are equal using the predicate IntEqual(inti,int’i).  

The predicate IntEqual(inti,int’i) evaluates the beginning and end of a time interval, both are 

instances of the class ot:Instant that are characterized by an instance of ot:DateTimeDescription 

that contains temporal unit (ot:unitType) instances such as ot:unitYear, ot:unitMonth, ot:unitDay, 

etc. and data properties such as year (ot:year), month (ot:month), day (ot:day), etc. where each is 

associated with values that represents the datetime parameters of the DateTimeDescription 

accordingly.  

 

 

Figure 24 Time Interval Representation 

We define interval equality inconsistency T2 as follows: 



60 

 

Any two instances of om:Quanty or om:Measure mij, mik ∊ Mi are potentially inconsistent in 

terms of interval equality if the interval inti and int’i referred by mij and mik respectively are not 

equal. 

 

Defintion 9 T2. Interval Equality Inconsistency 

Given the same example in the previous section where mij and mik are linked to 2013 and 2016 

respectively, mij and mik are evaluated with the predicate Before(inti,int’i) omitted. The intervals 

inti and int’i will be evaluated against the predicate IntEqual(inti,int’i). Since inti and int’I begins 

and ends with instants that are not equal, thus IntEqual(inti,int’i) returns false which in turn 

satisfies the predicate T2(mij,mik). Therefore, according to definition T2, mij and mik are 

inconsistent in terms of interval equality. 

 

T2. Interval Equality Inconsistency 

∀݉	݉	݅݊ݐ	݅݊ݐᇱ	 

ܶypeሺ݅݊ݐ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ ∧ ܶypeሺ݅݊ݐᇱ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ 	∧ Time൫m, ൯ݐ݊݅

∧ Timeሺm, ᇱሻݐ݊݅ ∧ ݈ܽݑݍܧݐ݊ܫሺ݅݊ݐ,  ᇱሻݐ݊݅

⊃ 	T2൫݉,݉൯ 



61 

 

 

Figure 25 Instances mij and mik where T2(mij,mik) 

3.2.3 T3. Subinterval Inconsistency 

Individuals mij and mik can be related to intervals inti and int’i that are linked by relations such as 

during, overlap, starts, finishes, and meets. In each case a portion of interval inti overlaps with 

int’i. Supporting data with intervals with such relations can only be guaranteed to be valid during 

the portion where the intervals overlap. Information during other portion of the interval is 

unknown. Thus the supporting data of an indicator is potentially inconsistent with the indicator if 

the interval referred is a (partial) subinterval of the interval referred by the indicator.  

An instance mij is potentially subinterval inconsistent with mik if it is related to a time interval inti 

that 



62 

 

 is during the interval int’i for mik, or 

 overlaps with int’i, or 

 starts interval int’i, or 

 ends interval int’i, or 

 meets interval int’i 

The first case of potential subinterval inconsistency occurs when an interval is during another. In 

Figure 3 it was mentioned that an interval inti is during interval int’i if the beginning and end of 

interval inti is within that of interval int’i. Let inti represent the interval March 1st to May 31st of 

2013 and int’i be the entire year of 2013. The time interval inti is during int’i and int’i contains inti 

as shown in Figure 26 below. 

 

Figure 26 An interval is during another 

Suppose interval inti represents the interval January 2012 to June 2013 which overlaps the time 

points of interval int’i which represents the year 2013. Since there are no information indicating 

the validity of the measure for June to December of 2013, thus an instance mij linked to inti is 

potentially inconsistent with mik that is linked to int’i.  

 

Figure 27 An interval overlaps with another 

We use the following predicates to specify interval relationships  

During(inti,int’i), Overlaps(inti,int’i), Starts(inti,int’i), Finishes(inti,int’i) 



63 

 

The corresponding inverse predicates are shown below respectively 

Contains(int’i,inti), OverlappedBy(int’i,inti), StartedBy(int’i,inti), FinishedBy(int’i,inti) 

 

Defintion 10 T3. Subinterval Inconsistency 

Suppose inti and int’i represents the following intervals March to May 2016 and the entire year of 

2016 respectively with the following statement: 

,ሺint݅ݎܶ :ݐ :ݐ/݃݊݅݊݊݅݃݁ܤݏ݄ܽ ,݁݉݅ܶ݁ݐܽܦ݊݅  ሻݏ݊݅

,ሺint݅ݎܶ :ݐ :ݐ/݀݊ܧݏ݄ܽ ,݁݉݅ܶ݁ݐܽܦ݊݅  ሻݏ݊݅

,ሺint′݅ݎܶ :ݐ :ݐ/݃݊݅݊݊݅݃݁ܤݏ݄ܽ ,݁݉݅ܶ݁ݐܽܦ݊݅  ሻ′ݏ݊݅

,ሺint′݅ݎܶ :ݐ :ݐ/݀݊ܧݏ݄ܽ ,݁݉݅ܶ݁ݐܽܦ݊݅  ሻ′ݏ݊݅

,ݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ :ݐ  ሻ݄ݐ݊ܯݐ݅݊ݑ

,ݏሺ݅݊݅ݎܶ :ݐ ,ݎܽ݁ݕ 2016ሻ 

,ݏሺ݅݊݅ݎܶ ,݄ݐ݊݉:ݐ 03ሻ 

T3. Subinterval Inconsistency 

∀݉	݉	݅݊ݐ	݅݊ݐᇱ	 

ܶypeሺ݅݊ݐ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ ∧ ܶypeሺ݅݊ݐᇱ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ 	∧ Time൫m, ൯ݐ݊݅

∧ Timeሺm, ᇱሻݐ݊݅

∧ ቀ൫݃݊݅ݎݑܦሺ݅݊ݐ, ሻ’ݐ݊݅ ∨ ,ᇱݐሺ݅݊ݏ݊݅ܽݐ݊ܥ	 ሻ൯ݐ݊݅

∨ 	൫ܱݏ݈ܽݎ݁ݒሺ݅݊ݐ, ሻ’ݐ݊݅ ∨ ,ᇱݐሺ݅݊ݕܤ݈݀݁ܽݎ݁ݒܱ	 ሻ൯ݐ݊݅

∨ 	൫ܵݏݐݎܽݐሺ݅݊ݐ, ሻ’ݐ݊݅ ∨ ,ᇱݐሺ݅݊ݕܤ݀݁ݐݎܽݐܵ	 ሻ൯ݐ݊݅

∨ 	൫ݏ݄݁ݏ݅݊݅ܨሺ݅݊ݐ, ሻ’ݐ݊݅ ∨ ,ᇱݐሺ݅݊ݕܤ݄݀݁ݏ݅݊݅ܨ	 ሻ൯ݐ݊݅

∨ 	൫ݏݐ݁݁ܯሺ݅݊ݐ, ሻ’ݐ݊݅ ∨ ,ᇱݐሺ݅݊ݕܤݐ݁ܯ	  ቁ	ሻ൯ݐ݊݅

⊃ 	T3൫݉,݉൯ 



64 

 

,ݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ :ݐ  ሻ݄ݐ݊ܯݐ݅݊ݑ

,ݏሺ݅݊݅ݎܶ :ݐ ,ݎܽ݁ݕ 2016ሻ 

,ݏሺ݅݊݅ݎܶ ,݄ݐ݊݉:ݐ 05ሻ 

,′ݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ :ݐ  ሻ݄ݐ݊ܯݐ݅݊ݑ

,ᇱݏሺ݅݊݅ݎܶ :ݐ ,ݎܽ݁ݕ 2016ሻ 

,′ݏሺ݅݊݅ݎܶ ,݄ݐ݊݉:ݐ 01ሻ 

,′ݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ :ݐ  ሻ݄ݐ݊ܯݐ݅݊ݑ

,′ݏሺ݅݊݅ݎܶ :ݐ ,ݎܽ݁ݕ 2016ሻ 

,′ݏሺ݅݊݅ݎܶ ,݄ݐ݊݉:ݐ 12ሻ 

The interval inti is therefore during int’i, that is,  

,ݐሺ݅݊݃݊݅ݎݑܦ ሻ′ݐ݊݅ ∨ ,′ݐሺ݅݊ݏ݊݅ܽݐ݊ܥ  ሻݐ݊݅

Suppose mij is the homeless population size effective during inti and mik is the instance of 

iso37120:15.2 published by Toronto for interval int’I, then 

ܶ݅݉݁൫݉, ൯ݐ݊݅ ∧ ܶ݅݉݁ሺ݉,  ሻ′ݐ݊݅

Therefore the mij and mik are potentially inconsistent in terms of subinterval inconsistency since 

inti is during int’I according to definition T3. 

3.2.4 T4. Temporal Granularity Inconsistency 

Temporal granularity inconsistency arises when time points associated with inti and int’i possess 

different temporal units. As seen in the previous section, time points insb and inse were linked to 

the instance ot:unitMonth which represents the temporal unit ‘month’. The values of ot:month 

were 03 and 05 respectively for insb and inse since inti represents the interval March to May of 

2016. Interval inti would be inconsistent if insb and inse have different temporal units, for 



65 

 

example, if insb has a temporal unit ot:unitMonth while inse is measured in ot:unitDay, then the 

interval inti starts from March 2016 and ends on a day in May, say, May 31st, 2016. Intervals inti 

and int’i will also become incomparable if time points were using different temporal units. Thus 

we define the following definition T4 to specify temporal granularity inconsistency: 

Any two instances mij and mik ∊ Mi are potentially inconsistent in terms of temporal granularity 

if the time interval inti and int’i have different temporal units. 

For any time point ins and ins’, the predicate Gra(ins, ins’) is true if the temporal units of the 

instants are not equal. 

 

Defintion 11 Granularity 

For an instant ins and interval inti, we specify the following predicates to represent that ins is the 

beginning and end of inti. 

Beginning(inti, ins), End(inti, ins) 

Let insb, ins’b, inse, and ins’e be the time points that represent the beginning and end of inti and 

int’i respectively. An individual mij is potentially temporal granularity inconsistent with mik if the 

intervals inti and int’i consist of time points with different temporal units. 

Predicate Gra(ins,ins’) 

 	ᇱݏ݊݅	ݏ݊݅∀

,ݏሺ݅݊݁ݕܶ :ݐ ሻݐ݊ܽݐݏ݊ܫ ∧ ,ᇱݏሺ݅݊݁ݕܶ	 :ݐ ሻݐ݊ܽݐݏ݊ܫ ∧ ,ݏሺ݅݊݅ݎܶ	 :ݐ ,݁ݕܶݐ݅݊ݑ ሻݐ݅݊ݑݐ

∧ ,ᇱݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ ᇱሻݐ݅݊ݑݐ ∧ ݈ܽݑݍܧሺݐ݅݊ݑݐ,  ᇱሻݐ݅݊ݑݐ

⊃ ,ݏሺ݅݊ܽݎܩ  ሻ′ݏ݊݅



66 

 

 

Defintion 12 T4. Temporal Granularity Inconsistency 

Consider the example from the previous section with temporal unit of insb and inse modified to 

be ot:unitYear instead of ot:unitMonth. 

,ݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ :ݐ  ሻݎܻܽ݁ݐ݅݊ݑ

,ݏሺ݅݊݅ݎܶ :ݐ ,ݎܽ݁ݕ 2016ሻ 

,ݏሺ݅݊݅ݎܶ :ݐ ,݁ݕܶݐ݅݊ݑ :ݐ  ሻݎܻܽ݁ݐ݅݊ݑ

,ݏሺ݅݊݅ݎܶ :ݐ ,ݎܽ݁ݕ 2016ሻ 

Interval inti now represents the year of 2016 with beginning and end time points with 2016 as the 

values of ot:year property. The interval int’i was intended to represent the same time interval but 

using the temporal unit ot:unitMonth, i.e., 01 and 12 were asserted for ot:month on both 

beginning and end time points ins’b and ins’e. There is no information on the values of smaller 

temporal units such as ot:day, ot:hour, etc. Therefore int’i may not have covered all time points 

in the year 2016 as inti. Since we have the predicate Gra(insb,ins’b) and Gra(inse,ins’e) therefore 

inti and int’i are inconsistent in terms of temporal granularity according to definition T4. 

T4. Temporal Granularity Inconsistency 

∀݉	݉	݅݊ݐ	݅݊ݐᇱ	 

ܶypeሺ݅݊ݐ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ ∧ ܶypeሺ݅݊ݐᇱ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ 	∧ Time൫m, ൯ݐ݊݅

∧ Timeሺm, ᇱሻݐ݊݅ ∧ 

,ݐሺ݅݊݃݊݅݊݊݅݃݁ܤ ሻݏ݊݅ ∧ ,ݐሺ݅݊݀݊ܧ	 ሻݏ݊݅	 ∧ ,ᇱݐሺ݅݊݃݊݅݊݊݅݃݁ܤ	 ᇱሻݏ݊݅

∧ ,ᇱݐሺ݅݊݀݊ܧ	 ᇱሻݏ݊݅	 ∧ 

൫ܽݎܩሺ݅݊ݏ, ᇱሻݏ݊݅ ∨ ,ݏሺ݅݊ܽݎܩ	 ᇱሻݏ݊݅ ∨ ,ݏሺ݅݊ܽݎܩ	 ሻݏ݊݅

∨ ,ᇱݏሺ݅݊ܽݎܩ	  ᇱሻ൯ݏ݊݅

⊃ 	T4൫݉,݉൯ 



67 

 

 

Figure 28 Instances mij and mik where T4(mij,mik) 

We have defined four types of temporal inconsistencies, namely non-overlapping interval 

inconsistency (T1), interval equality inconsistency (T2), subinterval inconsistency (T3) and 

temporal granularity inconsistency (T4). An instance mij is temporally inconsistent (TI) with mik 

if it is inconsistent with mik in terms of one of the inconsistency types defined.  

 

Defintion 13 TI. Temporal Inconsistency 

TI. Temporal Inconsistency 

∀݉	݉  

		ܶ1ሺ݉,݉ሻ ∨ ܶ2ሺ݉,݉ሻ ∨ ܶ3ሺ݉,݉ሻ ∨ ܶ4ሺ݉,݉ሻ 

⊃  ሺ݉,݉ሻܫܶ



68 

 

3.3 Place Inconsistency 

Every city indicator measures performance of a city. Place (i.e., toponym) concepts such as city, 

province, area, etc. are one of the foundational concepts involved in the definition of a city 

indicator. An indicator is related to a placename instance (e.g., city) by a ‘for_city’ property. 

This placename instance is also incorporated in the representation of supporting data (e.g., 

Populations) of the indicator. The property ‘located in’ is used for ‘Population’ class to describe 

the location where the target population resides in. The population must refer to a placename 

instance that is spatially equivalent with the city referred by the indicator in order to be 

consistent in terms of geographical place.  

Place inconsistencies deal with the placenames referred by two instances mij and mik ∊ Mi in the 

published indicator data. An instance mij may be related to an instance of geo:Feature city via 

properties gci:for_city, gci:located_in. mij is an instance of om:Quantity or gci:Population. We 

specify Place(mij, cityi) predicate to represent that mij is linked to cityi as follows: 

 

Defintion 14 Place 

The instances mij and mik are inconsistent in terms of place if 1) mij and mik are not referring to 

the same placename instance defined in Geonames, or 2) mij refers to a placename instance 

spatially located in the placename instance referred by mik, or 3) mij and mik are linked to the 

same placename intances with different time intervals. We will discuss each inconsistency type 

in the following sections. 

predicate Place(mij,cityi) 

∀݉	ܿ݅ݕݐ		 

,ݕݐሺܿ݅݁ݕܶ :݁݃ ሻ݁ݎݑݐܽ݁ܨ 	∧ 

ቌ
ቀܶype൫݉, om:ܳݕݐ݅ݐ݊ܽݑ൯ ∧ ܶri൫݉, gci: for_city, city൯ቁ ∨

ቀܶype൫݉, gci: ൯݊݅ݐ݈ܽݑܲ ∧ ܶri൫݉, gci: located_in, city൯ቁ
ቍ 

⊃ place൫݉, city൯ 



69 

 

3.3.1 G1. Place Equality Inconsistency 

All references to a city in the supporting data of a single indicator must refer to the same city. 

For example, the 15.2 indicator for Toronto is measured by measuring the homeless population 

and city’s overall population. Both populations should be located in Toronto. Therefore, if an 

individual in a published indicator data graph Si refers to a place instance cityi, an instance mik is 

inconsistent with mij if it refers to a different place instance than cityi, given that both mij and mik 

are instances of the set of nodes Mi from Si We specify this type of place inconsistency with the 

following definition G1: 

Instances mij and mik ∊ Mi from Si are inconsistent if place instances referred by mij and mik are 

not equal. We specify the predicate PlaceEqual(cityi, city’i) to indicate that cityi and city’i are the 

same placename instance. 

 

Defintion 15 G1. Place Equality Inconsistency 

Consider the scenario described above, let mij be the instance of indicator 15.2 which has a 

gci:for_city property with a value geo:Toronto and mik be the instance of homeless population 

measured by mij that has a property gci:located_in geo:NewYorkCity. Both geo:Toronto and 

geo:NYC are instances of geo:Feature and gci:City that represent Toronto and New York City 

respectively21. Let cityi and city’i represent the two cities respectively, the measure of mij is 

therefore inconsistent with mik in terms of place equality since the individuals refer to different 

cities. 

                                                 

21 Actual IRI of instances are geo:6167865 and geo:5128581 respectively. We use geo:Toronto and geo:NYC in this 
thesis for simplicity. 

G1. Place Equality Inconsistency 

∀݉	݉	ܿ݅ݕݐ	ܿ݅ݕݐᇱ	 

݈ܲܽܿ݁൫݉, ൯ݕݐ݅ܿ ∧ 	݈ܲܽܿ݁൫݉, ᇱ൯ݕݐ݅ܿ ∧ 	݈݈ܲܽܿ݁ܽݑݍܧ൫ܿ݅ݕݐ, ݕݐ݅ܿ
ᇱ
൯ 

⊃ G1൫݉,݉൯ 



70 

 

   

Figure 29 Instances mij and mik where G1(mij,mik) 

3.3.2 G2. SubPlace Inconsistency 

Subplace inconsistency refers to the situation where the placename referred by an instance mik is 

an area within the instance of mij. For example, the population measured by an indicator should 

be related to place instances city’i which include all areas within cityi which is referred by the 

indicator mij. The measure may not be complete if city’i is only an area within cityi since not all 

populations in cityi have been considered. The instance mij is potentially inconsistent with mik if 

city’i referred by mik is an area within the cityi referred by mij. Therefore we specify subplace 

inconsistency with following definition G2 where we specify the predicate Subplace(city’i, cityi) 

for individual city’i and cityi, both are instances of geo:Feature, to represent that city’i is spatially 

located in cityi: 



71 

 

Any two instances mij and mik ∊ Mi are potentially subplace inconsistent if instance of placename 

referred by mik is an area within city referred by mij 

 

Defintion 16 G2. Subplace Inconsistency 

For example, the homeless population size of Toronto could be an aggregation of homeless 

population size from different areas in Toronto. The population could be drawn from downtown 

area, North York area, etc. Therefore, the measured population should be related to all 

placename instances city’i that are areas within Toronto such that Subplace(cityi,geo:Toronto). 

Let mij be the instances of 15.2 and mik be the homeless population and city’i be downtown 

Toronto while cityi is geo:Toronto. Assume mij, mik, cityi, city’i are related via the predicates 

Place(mij, cityi) therefore Place(mik, city’i) and city’i is spatially located in cityI, i.e., 

Subplace(city’i, cityi). The instance mij is potentially subplace inconsistent with mik since the 

placename cityi referred is an area within the instance city’i (i.e., geo:Toronto) referred by mik. 

3.3.3 G3. Dynamic Place inconsistency 

A city can be related to a time interval via the property kp:effective. Therefore there exist 

different ‘versions’ of the same city. For example, the geographical definition of Toronto 

changed in 1998 after its amalgamation with adjacent municipalities (Fox, 2013). Dynamic 

placenames were introduced in Fox (2013) where place instances were linked to temporal 

intervals. Thus the city referred to by the indicator must be related to the same time interval with 

the city referred by the indicator’s supporting data. We define dynamic place inconsistency with 

the following definition G3: 

Any two instances mij and mik ∊ Mi are dynamic place inconsistent if cityi referred by mij has an 

effective time interval inti that is not equal to the effective interval int’i for city’i referred by mik. 

We define the predicate Revision(city’i, cityi) to specify that city’i is a revision of cityi meaning 

G2. Subplace Inconsistency 

∀݉	݉	ܿ݅ݕݐ	ܿ݅ݕݐᇱ 

	݈ܲܽܿ݁൫݉, ൯ݕݐ݅ܿ ∧ 	݈ܲܽܿ݁൫݉, ᇱ൯ݕݐ݅ܿ ∧ ,′ݕݐሺ݈ܾܿ݅݁ܿܽݑܵ	  ሻݕݐ݅ܿ

⊃ G2൫݉,݉൯ 



72 

 

that city’i is initially the same placename as cityi but is effective during an time interval that is 

different from the time interval of cityi. 

 

Defintion 17 Revision 

 

Defintion 18 G3. Dynamic Place inconsistency 

For example, if mij is the instance of 15.2 which is linked to Toronto in 2013, it is inconsistent in 

terms of dynamic place if mik is the instance of homeless population that is linked to Toronto 

associated with the year 1998. Let inti be the interval 2013 and int’I be 1998, dynamic place 

inconsistency in shown in Figure 30 below. 

Predicate Revision(ܿ݅ݕݐᇱ,  .(ݕݐ݅ܿ

ݐ݊݅	ݐ݊݅	ᇱݕݐ݅ܿ	ݕݐ݅ܿ∀
ᇱ
	 

,ݐሺ݅݊݁ݕܶ :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ ∧ ,’ݐሺ݅݊݁ݕܶ	 :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ

∧ ,ᇱݕݐሺ݈ܿ݅ܽݑݍܧ݈݁ܿܽܲ ሻݕݐ݅ܿ ∧ ,ݕݐሺܿ݅݅ݎܶ :݇ ,݁ݒ݅ݐ݂݂ܿ݁݁ ሻݐ݊݅

∧ ,’ݕݐሺܿ݅݅ݎܶ	 :݇ ,݁ݒ݅ݐ݂݂ܿ݁݁ ሻ’ݐ݊݅ ∧ ݈ܽݑݍܧݐ݊ܫሺ݅݊ݐ,  ሻ’ݐ݊݅

⊃ Revision൫݉,݉൯ 

G3. Dynamic Place inconsistency 

∀݉	݉	ܿ݅ݕݐ	ܿ݅ݕݐᇱ	 

݈ܲܽܿ݁൫݉, ൯ݕݐ݅ܿ ∧ 	݈ܲܽܿ݁൫݉, ᇱ൯ݕݐ݅ܿ ∧ ݕݐሺܿ݅݊݅ݏ݅ݒܴ݁	
ᇱ
,  ሻݕݐ݅ܿ

⊃ G3൫݉,݉൯ 



73 

 

 

Figure 30 Dynamic place inconsistency 

3.3.4 G4. Dynamic Place Temporal Inconsistency 

As shown above, cities can be linked to time intervals to represent different ‘versions’ of the city. 

Thus the time interval of an indicator must be during the time interval referred by the place 

instance measured by the indicator. 

An instance mij ∊ Mi is potentially inconsistent with its measured city cityi if mij is linked to a 

time interval inti that is not during (or contained by) the effective interval int’i for cityi.  



74 

 

 

Defintion 19 G4. Dynamic Place Temporal Inconsistency 

For example, Toronto publishes indicator value for 15.2 for 2013 is dynamic place temporally 

inconsistent if it measures the instance geo:Toronto[1967-1998] which represents Toronto before 

the amalgamation occurred in 1998. 

We have defined four types of place inconsistencies, namely place equality inconsistency (G1), 

subplace inconsistency (G2), dynamic place inconsistency (G3), and dynamic place 

inconsistency (G4). An instance mij is place inconsistent (PI) with mik if it is inconsistent with 

mik in terms of one of the inconsistency types defined. 

 

Defintion 20 PI. Place Inconsistency 

3.4 Measurement Inconsistency 

Measurement consistency considers consistency of unit of measure of the published indicator 

data. Consistency of units is evaluated based on two aspects of the indicator. First is to evaluate 

G4. Dynamic Place Temporal Inconsistency 

∀݉	ܿ݅ݕݐ	݅݊ݐ	݅݊ݐᇱ	 

ܶypeሺ݅݊ݐ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ ∧ ܶypeሺ݅݊ݐᇱ, :ݐ ሻ݈ܽݒݎ݁ݐ݊ܫ 	∧ Time൫m, ൯ݐ݊݅

∧ Triሺcity, :݇ ,݁ݒ݅ݐ݂݂ܿ݁݁ ᇱሻݐ݊݅ 	∧ Placeሺm, cityሻ

∧ ሺ݃݊݅ݎݑܦሺ݅݊ݐ, ሻ’ݐ݊݅ ∨ ,ᇱݐሺ݅݊ݏ݊݅ܽݐ݊ܥ	  ሻ	ሻݐ݊݅

⊃ 	G4൫݉,  ൯ݕݐ݅ܿ

PI. Place Inconsistency 

∀݉	݉  

1ሺ݉,݉ሻܩ ∨ 2ሺ݉,݉ሻܩ ∨ 3ሺ݉,݉ሻܩ ∨  4ሺ݉,݉ሻܩ

⊃  ሺ݉,݉ሻܫܲ



75 

 

the units used by the composition of indicator, e.g., the indicator and its numerator and 

denominator. Second is to evaluate if instances of om:Quantity and their actual values (instances 

of om:Measure) are applying to the same units. It is also of interest if a multiple or submultiple 

of the unit referred by the indicator's definition is referred by indicator’s supporting data. 

Therefore, the set of individuals Mi ⊆ Si is measurement inconsistent with the indicator if 

individuals mij and mik ∊ Mi are linked to distinct instances of om:Unit_of_measure uniti and 

unit’i respectively, where mij and mik are quantities or measures, or uniti is a multiple or 

submultiple unit of unit’i. We use the predicate Unit(mij, uniti) to indicate that an individual mij is 

related to uniti.  

 

Defintion 21 Unit 

 

3.4.1 M1. Quantity Measure Inconsistency  

As depicted in Figure 31, both a Quantity and its Measure must refer to the same unit of 

measure.  

M1: Any two instances mij and mik ∊ Mi are measurement inconsistent if an instance of Quantity 

mij has a unit of measure uniti that is different from the Measure's unit of measure unit’i. 

Predicate Unit(mij, uniti) 

∀݉	݊	ݐ݅݊ݑ			 

ቀܶ݁ݕ൫݉, ൯ݕݐ݅ݐ݊ܽݑܳ:݉ ∨ ,൫݉݁ݕܶ ൯ቁ݁ݎݑݏܽ݁ܯ:݉

∧ ,ݐ݅݊ݑሺ݁ݕܶ ݊ሻ ∧ ,ሺ݊ݏݏ݈ܾܽܿݑܵ ሻ݁ݎݑݏܽ݁݉_݂_ݐܷ݅݊:݉

∧ ,൫݉݅ݎܶ :݉ ,݁ݎݑݏܽ݁݉_݂_ݐ݅݊ݑ  ൯ݐ݅݊ݑ

⊃ Unit൫݉,  ൯ݐ݅݊ݑ



76 

 

 

Defintion 22 M1. Quantity Measure Inconsistency 

 

 

Figure 31 Instances mij and mik where M1(mij,mik) 

 

M1. Quantity Measure Inconsistency 

∀݉	݉	ݐ݅݊ݑ	ݐ݅݊ݑᇱ			 

,൫݉݁ݕܶ ൯ݕݐ݅ݐ݊ܽݑܳ:݉ ∧ ,ሺ݉݁ݕܶ ሻ݁ݎݑݏܽ݁ܯ:݉

∧ ,൫݉݅ݎܶ :݉ ൯݉,݁ݑ݈ܽݒ ∧ Unit൫݉, ൯ݐ݅݊ݑ

∧ Unitሺ݉, ᇱሻݐ݅݊ݑ ∧ 	݈ܽݑݍܧሺݐ݅݊ݑ,  ᇱሻݐ݅݊ݑ

⊃ M1൫݉,݉൯ 



77 

 

3.4.2 M2. Indicator Unit Component Inconsistency  

The supporting data of an indicator is related to the instance of the indicator via properties such 

as numerator and denominator for a ratio indicator, or factors for a multiplication indicator. The 

units of measure of such indicators should be linked to the unit of measure of the supporting data 

via the same properties.   

Any two instances of om:Quantity mij and mik ∊ Mi where mij is connected to mik via a property 

ait(e.g., numerator, denominator), mij and mik has a unit of measure uniti and unit’i respectively. 

The instance mij is inconsistent with mik if definition of uniti and unit’i are not connected by ait. 

 

Defintion 23 M2. Indicator Unit Component Inconsistency 

Suppose mij is the instance of 15.2 indicator and mik and miv are the instances of homeless 

population size and city population size respectively. We need to evaluate if the unit referred by 

mij, i.e., gci:population_ratio_unit is compatible with the unit referred by mik and miv, i.e., 

gci:population_cardinality_unit. Let uniti be gci:‘population_ratio_unit’, which has both its 

numerator and denominator as ‘gci:population_cardinality_unit’ represented by unit’i. Since the 

mij is linked to mik via the property om:numerator and miv with om:denominator, the unit of 

measure associated with mik and miv must be unit’i which is linked to uniti through om:numerator 

and om:denominator. The instance mij will be inconsistent if one of mik and miv has a different 

unit than unit’i. 

M2. Indicator Unit Component Inconsistency 

∀݉	݉	ݐ݅݊ݑ	ݐ݅݊ݑᇱ		 

,൫݉݁ݕܶ	 ൯ݕݐ݅ݐ݊ܽݑܳ:݉ ∧ ,ሺ݉݁ݕܶ ሻݕݐ݅ݐ݊ܽݑܳ:݉ ∧ ,ݐ݅݊ݑሺ݁ݕܶ ݊ሻ

∧ ,ᇱݐ݅݊ݑሺ݁ݕܶ ݊ᇱሻ ∧ Unit൫݉, ൯ݐ݅݊ݑ ∧ Unitሺ݉, ᇱሻݐ݅݊ݑ ∧	 

∃ܽ௧ 	ቀܶ݅ݎ൫݉, ܽ௧,݉൯ ⊃ ܶ݅ݎሺ݊, ܽ௧, ݊ᇱሻቁ 

⊃ M2൫݉,݉൯ 



78 

 

 

Figure 32 Indicator component inconsistency where T2(mij,mik) 

 

3.4.3 M3. Singular Unit Inconsistency 

Another case of measurement inconsistency is when an instance mij has a unit of measure uniti 

that is a multiple or submultiple of the unit defined in its corresponding definition class nik. It is 

therefore inconsistent with its corresponding class nik in terms of singular unit. We specify 

singular unit inconsistency with the following definition  

M4: Given Cor(mij,nik), mij ∊	Si and nik, niv ∊ Di, are inconsistent if the unit of measure uniti used 

by mij is an instance of a class that is a singular unit of niv which is a subclass of 

om:Unit_of_measure that is related to nik via the property om:unit_of_measure. 

We specify the predicate Su(uniti,niv) to represent that uniti is an instance of a class that is a 

multiple or submultiple unit of class niv given that niv is a subclass of om:Unit_of_measure. 



79 

 

 

Defintion 24 M3. Singular Unit Inconsistency 

Published indicator and its supporting data may refer to unit of measure that is a multiple or 

submultiple of the unit specified in the definition. Let uniti be an instance of the class gci:kilopc 

and niv be the class gci:’population_cardinality_unit’(pc). The class niv is related to gci:kilopc 

via the property om:’singular_unit’. Suppose mij is instance of its corresponding definition class 

of homeless population size nik, while niv is the unit defined by nik. The instance mij is 

inconsistent with nik if the predicate Unit(mij,uniti) is true since it is using the unit kilopc instead 

of pc as defined by nik. 

This type of measurement inconsistency is also captured by the evaluation of type inconsistency 

TC2 as discussed earlier since a unit of measure other than pc defined by nik was referenced. In 

the case of a unit such as kilopc was used by mij, we wish to return the nature of inconsistency 

such that the unit is a multiple or submultiple of the unit of measure specified by the definition.  

We have defined three types of measurement inconsistencies, namely unit of quantities and 

measures inconsistency (M1), quantity component inconsistency (M2), and singular unit 

inconsistency (M3). An instance mij is inconsistent in terms of measurement (MI) with mik if it is 

inconsistent in terms of one of the measurement inconsistency types defined. 

M3. Singular Unit Inconsistency 

∀݉	݊	݊௩	ݐ݅݊ݑ			 

,൫݉ݎܥ	 ݊൯ ∧ Unit൫݉, ൯ݐ݅݊ݑ ∧ Triሺ݊, :݉ ,݁ݎݑݏܽ݁݉_݂_ݐ݅݊ݑ ݊௩ሻ

∧ ,ሺ݊௩ݏݏ݈ܾܽܿݑܵ ሻ݁ݎݑݏܽ݁݉_݂_ݐܷ݅݊:݉ ∧ ,ݐ݅݊ݑሺݑܵ	 ݊௩ሻ 

⊃ M3൫݉,݉൯ 



80 

 

 

Defintion 25 MI. Measurement Inconsistency 

3.5 Summary 

In this chapter we defined types of definitional inconsistencies of a published city indicator with 

respect to the indicator’s definition. Definitional consistency refers to whether an indicator is 

consistent with respect to provided definition, (i.e., ISO 37120 standards) and is also internally 

consistent. Indicator value and supporting data are considered to be inconsistent with its 

definition if it satisfies at least one of the following inconsistency types. Prolog implementation 

of each inconsistency types can be found in Appendix III. 

Correspondence Inconsistency: where there are no correspondence detected between nodes in 

the indicator’s definition and city published indicator data. This means that not all components in 

the definition are covered by the published indicator data. 

Inconsistency  Description 

CI. Correspondence 

Inconsistency 

for any corresponding nodes mij  Mi  and nik  Ni, there exists a 

class niy that is linked to nik via property ait where there is no node 

mix linked to mij that corresponds to niy. 

TC. Type Inconsistency: the type of all instances from the published indicator are instances 

from, an equivalent class, a subclass, or subsumed by classes defined by the indicator’s 

definition. 

Type Inconsistency  Description 

MI. Measurement Inconsistency 

∀݉	݉  

1൫݉,݉൯ܯ ∨ 2൫݉,݉൯ܯ ∨  3൫݉,݉൯ܯ

⊃  ሺ݉,݉ሻܫܯ



81 

 

TC1. Class Type 

Inconsistency 

a class X is type inconsistent with class Y if X is not the same, an 

equivalent class, nor a subclass of Y, or X is not subsumed by Y. 

TC2. Instance Type 

Inconsistency 

Let mij, civ, and nik be nodes of Mi, Ci, and Ni respectively, mij is instance 

type inconsistent if: 

 there does not exist a direct rdf:type relation between mij and 
nik, and 

 mij is not an instance of nik, and 

 mij is an instance of civ, and civ is type inconsistent with nik 

TC3. Property 

Inconsistency 

An instance mij ∊ Mi is potentially inconsistent with its corresponding 

definition class nik ∊ Ni if there exist a necessary property ait defined in 

nik that satisfies one of the following conditions  

 ait does not exist in mij, or 

 the cardinality of ait for mij does not satisfy the cardinality 
restriction defined in nik, or 

 mij does not satisfy the value restriction of ait defined in nik 

TI. Temporal Inconsistency: an indicator is inconsistent with its definition in terms of temporal 

entities. Temporal inconsistencies occur when supporting data are measured for a time interval 

that is not equal to, is a subinterval of, or has different temporal unit with the time interval 

measured by the indicator. 

Temporal 

Inconsistency 

Description 

T1. Interval Overlap 

Inconsistency 

Any two instances of om:Quantity or om:Measure mij, mik ∊ Mi are 

potentially inconsistent if time interval measured by mij 

 is before the interval int’i used by mik, or 

 Is after the interval int’i 

T2. Interval Equality 

Inconsistency 

Any two instances of om:Quanty or om:Measure mij, mik ∊ Mi are 

potentially inconsistent in terms of interval equality if the interval inti 

and int’i referred by mij and mik respectively are not equal 



82 

 

T3. Subinterval 

Inconsistency 

An instance mij is potentially subinterval inconsistent with mik if it is 

related to a time interval inti that 

 is during the interval int’i for mik, or 

 overlaps with int’i, or 

 starts interval int’i, or 

 ends interval int’i, or 

 meets interval int’i 

T4. Temporal 

Granularity 

Inconsistency 

Any two instances mij and mik ∊ Mi are potentially inconsistent in 

terms of temporal granularity if the time interval inti and int’i have 

different temporal units. 

PI. Placename Inconsistency: an indicator’s geographical concepts are inconsistent with the 

indicator’s definition. Place inconsistencies include 1) Place equality inconsistency where a 

population was drawn from a place different than the city specified by the indicator, 2) Subplace 

inconsistentcy, where a population is drawn from areas within the city specified by the indicator, 

or 3) Dynamic Placename inconsistency which considers the case where population was drawn 

from the city that is referred to a different time. 

Placename 

Inconsistency 

Description 

G1. Place Equality 

Inconsistency 

Instances mij and mik ∊ Mi from Si are inconsistent if place instances 

referred by mij and mik are not equal.  

G2. SubPlace 

Inconsistency 

Any two instances mij and mik ∊ Mi are potentially subplace 

inconsistent if instance of placename referred by mik is an area 

within city referred by mij 

G3. Dynamic Place 

Inconsistency 

Any two instances mij and mik ∊ Mi are dynamic place inconsistent if 

cityi referred by mij has an effective time interval inti that is not 

equal to the effective interval int’i for city’i referred by mik. 



83 

 

G4. Dynamic Place 

Temporal 

Inconsistency 

An instance mij ∊ Mi is potentially inconsistent with its measured 

city cityi if mij is linked to a time interval inti that is not during (or 

contained by) the effective interval int’i for cityi. 

MI. Measurement Inconsistency: Units of measure used to measure the values of the indicator 

and its supporting data are internally consistent and consistent with respect to the indicator’s 

definition. Measurement inconsistency may occur due to different units of measure used for 

quantities and its measure, or the use of multiples or submultiple of the unit defined by the 

indicator’s definition. 

Measurement 

Inconsistency 

Description 

M1. Quantity 

Measure 

Inconsistency 

Any two instances mij and mik ∊ Mi are measurement inconsistent if an 

instance of Quantity mij has a unit of measure uniti that is different 

from the Measure's unit of measure unit’i . 

M2. Indicator Unit 

Component 

Inconsistency 

Any two instances of om:Quantity mij and mik ∊ Mi where mij is 

connected to mik via a property ait(e.g., numerator, denominator), mij 

and mik has a unit of measure uniti and unit’i respectively. The instance 

mij is inconsistent with mik if definition of uniti and unit’i are not 

connected by ait. 

M3. Singular Unit 

Consistency 

Given Cor(mij,nik), mij ∊	Si and nik, niv ∊ Di, are potential inconsistent if 

the unit of measure uniti used by mij is an instance of a class that is a 

singular unit of niv which is a subclass of om:Unit_of_measure that is 

related to nik via the property om:unit_of_measure. 

In the next chapter we will discuss transversal and longitudinal consistency analysis which 

evaluates published indicator instances and city specific definition between different cities and a 

city over different time periods.



 

84 

Chapter 4  
Transversal and Longitudinal Consistency 

 Transversal and Longitudinal Consistency 

When comparing indicator data published by the same city at two different times or two cities at 

the same time on the semantic web, it is crucial to ensure they are consistent with each other. We 

call this longitudinal and transversal consistency respectively. For example, the ISO 37120 15.2 

indicator is longitudinally inconsistent if the geospatial dimensions of the city have changed over 

time, which means that homeless population included are from different locations. The indicator 

is transversally inconsistent if the definition of a homeless person differs between two cities. 

The following formally defines the different types of longitudinal and transversal inconsistencies 

that may arise. 

4.1 Transversal Consistency Analysis 

Consider the evaluation of city indicator values and supporting data used to derive them, 

published by City 1 and City 2, represented as instances of classes from the indicator’s 

definition, theme general knowledge, and city specific knowledge. We assume theme and city 

specific ontologies used to represent the indicator data provided by City 1 and City 2, are 

logically consistent. We also assume that published indicator values and supporting data 

provided by both City 1 and City 2 are definitional consistent with the indicator’s definition.  

Similar to definitional consistency analysis, published indicator data from both cities are 

represented as graphs where nodes represent instances, classes or literals, and arcs represent 

properties. Let Scity1
i be the graph that represents the indicator data published by City 1 and Scity2

i 

be the graph that represents indicator data published by City 2 for an indicator i.  

Indicator values and supporting data published by a city are evaluated against corresponding data 

published by another city. That is, nodes mcity1
ij in Scity1

i will be evaluated with respect to 

corresponding nodes mcity2
ik in Scity2

i. Inter-indicator correspondence between nodes of Scity1
i and 

Scity2
i is represented by Cor_I(mcity1

ij, mcity2
ik). Table 6 below lists the notation used in transversal 

consistency analysis.  



85 

 

 

Table 6 Notation for transversal consistency analysis 

Published City Indicator Data and City Specific Knowledge 

 Let S be the set of all published indicator data 
 Let OC1 be the City Specific ontology in S from City 1 
 Let OC2 be the City Specific ontology in S from City 2 
 Let Scity1

i be the graph that represents the data used to derive indicator i for 
City 1 

 Let Scity2
i be the graph that represents the data used to derive indicator i for 

City 2 
 Scity1

i is composed of a set of nodes Acity1
i, Ccity1

i , Mcity1
i and Ni, where 

o Acity1
i is a set of properties in Scity1

i 
o Mcity1

i is a set of individuals in Scity1
i 

o Ccity1
i ⊆ class(OC1) ∪ indiv(OC1) ∪	literal(OC1),	where  
 class(OC1) is the set of classes defined in OC1,   
 indiv(OC1) is a set of individuals in OC1, and  
 literal(OC1) is a set of literals in Oc1  

 Scity2
i is composed of a set of nodes Acity2

i, Ccity2
i , Mcity2

i , and Ni, where 
o Acity2

i is a set of properties in Scity2
i 

o Mcity2
i is a set of individuals in Scity2

i 
o Ccity2

i ⊆ class(OC2) ∪ indiv(OC2) ∪	literal(OC2)	where  
 class(OC2) is the set of classes defined in OC2, and  
 indiv(OC2) is a set of individuals in OC2, and  
 literals(OC2) is a set of literals in Oc2  

 Ccity1c
i ⊆ class(OC1) ⊆ Ccity1

i 
 Ccity2c

i ⊆ class(OC2) ⊆ Ccity2
i 



86 

 

 

Table 7 Indicator value and supporting data from different cities comply to definition Di 

As mentioned in Chapter 3, determining correspondence between instances of two graphs can be 

difficult.  Determining correspondence can be simplified by identifying the subset of instances 

we wish to determine consistency.  We refer to these as instances of Primary classes. We denote 

Primary classes as Prim(nik) where nik  Nclass
i  Di. Examples of primary classes include 

indicator and population size. Examples of secondary instances, are instances of om:Measure and 

om:Unit_of_measure. We denote Secondary classes as Sec(nik) where nik  Nclass
i  Di. Inter-



87 

 

indicaotr correspondences are only established for instances of Primary classes. We assume in 

the remainder of this chapter that all individuals mij  Mi, are instances of Prim(nik) unless stated 

otherwise. 

 

Defintion 26 Inter-indicator correspondence 

Inter-indicator correspondence inconsistency may exist between the indicator data published by 

the cities if no correspondence Cor_I(mcity1
ij, mcity2

ik) can be found for mcity1
ij and mcity2

ik. This 

means that one city is providing more information than the other. 

Predicate Cor_I(mcity1
ij, mcity2

ik) 

∀ mcity1
ij, mcity2

ik, nik 

(Type(mcity1
ij, nik)	∧ Type(mcity2

ij, nik)	∧	Primሺnik))	∨		

∃ mcity1
ix mcity2

iy ait  

(Cor_I(mcity1
ix, mcity2

iy)	∧ Tri(mcity1
ix,ait, mcity1

ij ) ∧Tri(mcity2
iy,ait, mcity2

ik)) 

⊃ Cor_I(mcity1
ij, mcity2

ik) 



88 

 

 

Defintion 27 Inter_CI. Inter-indicator Correpondence Inconsistency 

In the following, we define different types of transversal inconsistencies. Similar to definitional 

consistency analysis, categories of inconsistencies include transversal type inconsistency, 

temporal inconsistency, geographical, and measurement inconsistency. 

4.1.1 Trans_TC. Transversal Type Inconsistency 

Transversal type inconsistency evaluates type inconsistency between corresponding instances 

representing indicator data published by City 1 and City 2. Although both set of instances from 

Scity1
i and Scity2

i are definitional consistent, we still need to evaluate if both City 1 and City 2 are 

measuring the same population since definition of concepts such as homeless person, shelters 

may differ between cities.  

An instance mcity1
ij ∊ Mcity1

i is type inconsistent with its corresponding instance mcity2
ik ∊ Mcity2

i if 

mcity1
ij is an instance of a class ccity1

i ∊ Ccity1
i and mcity2

ik is an instance of a class ccity2
i ∊ Ccity2

i 

such that ccity1
i is not equivalent to ccity2

i. 

Inter_CI. Inter-indicator Correspondence Inconsistency 

∀ mcity1
ij, mcity2

ik, nik 

Cor_I(mcity1
ij, mcity2

ik) ∧		

∃ mcity1
ix mcity2

iy ait  

( Tri(mcity2
ik,ait, mcity2

iy) ⊃	

∃ mcity1
ix (Tri(mcity1

ij,ait, mcity1
ix )	∧	Cor_I(mcity1

ix, mcity2
iy))  ) 

⊃ Inter_CI(mcity1
ij, mcity2

ik) 



89 

 

 

Defintion 28 Trans_TC. Transversal Type Inconsistency 

According to the ISO 37120 definition of 15.2 indicator represented with the GCI ontologies, a 

homeless population is defined by a homeless person. But a homeless person is defined 

differently between Toronto and New York City according to city specific knowledge provided 

by the cities (City of Toronto, 2013; Coalition of Homeless, 2016). The definition of a homeless 

person is represented using the classes ‘Toronto_homeless_person’ and NYC_homeless_person’ 

for Toronto and New York City respectively. ‘Toronto_homeless_person’ was described in 

Chapter 3 as a homeless person who lives outdoor, in an emergency homeless shelter, a VAW 

shelter or a treatment facility. ‘NYC_homeless_person’ is defined to be homeless person who 

lives in a single adult shelter or a family shelter. Both cities satisfy the definition of 

homelessness outlined by ISO 37120 (i.e., are definitional consistent) but disagree on the specific 

types of homeless shelters that characterize their homeless population. Therefore, the set of 

classes that restrict the property gcis:livesIn need to be compared between Toronto and NYC in 

order to verify the definition of homeless person is transversally consistent.  

We define Toronto homeless shelter and NYC homeless shelter as follow: 

Toronto homeless shelter = emergency shelter ∨ VAW shelter ∨ treatment facility 

Trans_TC. Transversal Type Inconsistency 

∀mcity1
ij mcity2

ik 

 Cor_I(mcity1
ij, mcity2

ik) ∧  

 ∃ccity1
i ccity2

i 

( Type(mcity1
ij, ccity1

i) ∧ Type(mcity2
ik, ccity2

i) ∧   

¬Equal(ccity1
i, ccity2

i)  ) 

⊃ Trans_TC(mcity1
ij, mcity2

ik) 



90 

 

NYC homeless shelter = single adult shelter ∨ family shelter 

Let mcity1
ij be an instance of Toronto homeless person and mcity2

ik be an instance of NYC 

homeless person with the following triples: 

Tri(mcity1
ij, gcis:livesIn, mcity1

ix) 

Tri(mcity2
ik, gcis:livesIn, mcity2

iy) 

Tri(Toronto homeless person, gcis:livesIn, Toronto homeless shelter) 

Tri(NYC homeless person, gcis:livesIn, NYC homeless shelter) 

Where mcity1
ix and mcity2

iy are instances of Toronto and NYC homeless shelters respectively. The 

cardinality restriction of gcis:livesIn for both classes are exactly 1. Given that Cor_I(mcity1
ij, 

mcity2
ik), we first evaluate the class Toronto_homeless_person and NYC_homeless_person. Since 

the two classes are not the same class, the value restriction of properties will be evaluated for 

equivalency. The classes are linked to Toronto homeless shelter and NYC homeless shelter via 

the property gcis:livesIn. 

Let ctrt
iu and cnyc

iv represent homeless person class for Toronto and NYC respectively. Let ctrt
ix  be 

the class represent the class ‘outdoor or Toronto homeless shelter’ and cnyc
iy be the NYC 

homeless shelter class. Transversal consistency analysis will then evaluate the restrictions of 

property ait which is gcis:livesIn in this case. We have card(ctrt
iu,gci:livesIn) = card(cnyc

iv, 

gci:livesIn) since both classes have exactly 1 as cardinality restriction for gcis:livesIn. The value 

restrictions of gcis:livesIn are classes ctrt
ix and cnyc

iy which are neither the same class nor 

equivalent class since different types of homeless shelters are referred by Toronto and NYC. 

Therefore Trans_TC(mcity1
ix, mcity2

iy) is true and the instance mcity1
ij and mcity2

ik are transversally 

type inconsistent. 

4.1.2 Trans_TI. Transversal Temporal Inconsistency 

In Definitional consistency analysis, we have determined whether the quantities and measures of 

published indicator data refer to the same time interval. In transversal consistency analysis, 

temporal inconsistency is determined between the indicator values published by City 1 and City 

2. The time interval referred by the indicators and supporting data should be the same between 



91 

 

the two cities being compared. For example, if the 15.2 Homeless ratio indicator data published 

by Toronto was generated in the year 2013 then the indicator data being compared published by 

New York City should also be generated in 2013 and are valid throughout the entire year. 

Corresponding individuals mcity1
ij and mcity2

ik, which are instances of the indicator iso37120:15.2, 

are temporally inconsistent if they refer to the different time intervals. That is, T2(mcity1
ij, mcity2

ik) 

must be false.22 

As shown in the Figure 33 below, the time interval that the indicators referenced to are 

represented with the instances y2013_trt and y2013_nyc respectively. Both are instances of the 

class ot:Interval with a beginning (ot:hasBeginning) and end (ot:hasEnd) that link to an instance 

of ot:Instant. The date-time representation (instances of ot:DateTimeDescription) of both 

beginning and end of the two time intervals must have the same temporal unit and values for 

property ot:year. E.g., both have ‘unitYear’ as value for ‘unitType’ and the value of property 

ot:year is ‘2013’. Let the mcity1
ij be an instance of data published by Toronto and mcity2

ik be that of 

NYC, T2(mcity1
ij, mcity2

ik) is evaluated to be false since the intervals are equal.  

 

Figure 33 Time interval linked by indicator of Toronto and NYC 

The same type of temporal inconsistencies defined in definitional consistency analysis can be 

applied between mcity1
ij and mcity2

ik, temporal inconsistencies T1, T3, and T4 can be applied to the 

indicator instances in order to verify if the time intervals are inconsistent in terms of overlap, 

subintervals, or temporal granularity inconsistency. 

                                                 

22 It could be the case that a comparison of two cities at different time intervals is desired.  Never the less, an 
inconsistency would be determined. 



92 

 

 

Defintion 29 Trans_TI. Transversal Temporal Inconsistency 

4.1.3 Trans_PI. Transversal Place Inconsistency 

Transversal place inconsistency identifies geographical inconsistencies between published 

indicators from two different cities. Place inconsistencies deal with the placename referred to by 

any two corresponding instances mcity1
ij  Mcity1

i and mcity2
ik  Mcity2

i in the published indicator 

data. Instead of ensuring consistency, transversal consistency analysis requires placenames being 

measured are inconsistent. The values of ‘for_city’ of mcity1
ij and mcity2

ik were compared to 

ensure that the indicators are measuring performance for different cities which means G1(mcity1
ij, 

mcity2
ik) must be true. In addition, mcity1

ij and mcity2
ik are inconsistent in terms of place if mcity1

ij 

and mcity2
ik are linked to placename instances with different feature codes or different time 

intervals.  

Trans_G1. Feature Code Inconsistency 

Indicators measured for different types of cities may be incomparable due to different 

administrative level and urbanization of the cities. E.g., the homeless population ratio will be 

significantly different when comparing a capital city to a farm village. In Geonames 

(http://www.geonames.org), a set of feature codes were used to distinguish different types of 

cities and administrative division. For example, feature code ‘P.PPLC’ represents the capital of a 

political entity, and ‘P.PPLF’ represents a farm village. We specify the predicate Adm(cityi, 

codei) for individual cityi which is an instances of geo:Feature, and codei which is an instance of 

geo:featureCode to represent that cityi or its administrative division has a feature code codei. 

Trans_TI. Transversal Temporal Inconsistency 

∀mcity1
ij mcity2

ik 

 Cor_I(mcity1
ij, mcity2

ik) ∧		

ሺT1(mcity1
ij, mcity2

ik) ∨ T2(mcity1
ij, mcity2

ik) ∨ T3(mcity1
ij, mcity2

ik) ∨ T4(mcity1
ij, mcity2

ik)) 

⊃ Trans_TI(mcity1
ij, mcity2

ik) 



93 

 

 

Defintion 30 Administration (Feature Code) 

Any two corresponding instances mcity1
ij  Mcity1

i and mcity2
ik  Mcity2

i are potentially inconsistent 

if instance of placename citycity1
i referred by mcity1

ij has an admin division feature that is different 

from the placename citycity2
i referred by mcity2

ik 

 

Defintion 31 Trans_G1. Feature Code Inconsistency 

Predicate Adm(cityi, codei) 

∀ cityi admin codei  

Type(cityi,geo:Feature) ∧  

( Tri(cityi,geo:featureCode,code) ∨  

(Tri(cityi,geo:parentCountry,admin) ∨	Tri(cityi,geo:parentADM1,admin))		

∧ Tri(admin,geo:featureCode,code)  )	

⊃ Adm(cityi, codei)  

Trans_G1. Feature Code Inconsistency 

∀ mcity1
ij mcity2

ik citycity1
i citycity2

i codecity1
i codecity2

i 

  Cor_I(mcity1
ij, mcity2

ik) ∧  

 Place(mcity1
ij, citycity1

i) ∧ Place(mcity2
ik, citycity2

i) ∧  

 Adm(citycity1
i codecity1

i) ∧ Adm(citycity2
i codecity2

i) ∧  

 ¬Equal(codecity1
i, codecity2

i)  

⊃ Trans_G1(mcity1
ij, mcity2

ik)  



94 

 

Suppose we have instances of indicators mcity1
ij and mcity2

ik where City 1 and City 2 are Toronto 

and Ottawa respectively. The definition of feature codes for Toronto and Ottawa are listed in 

Table 8 below.  The feature codes are not equal meaning that the cities have different 

administrative characteristics (Ottawa is the capital of Canada). Therefore city indicators 

measured for Toronto is potentially transversally inconsistent with city indicator measured for 

Ottawa. 

City  Feature Label  Definition 

Toronto  P.PLA  seat of a first‐order 

administrative division 

seat of a first‐order administrative division 

(PPLC takes precedence over PPLA) 

Ottawa  P.PLC  capital of a political entity   

Table 8 Feature Code Definition from Geonames 

Trans_G2. Transversal Dynamic Place Inconsistency 

As discussed in Chapter 3, the definition of a city may change over time. The placename 

instances measured by city indicators published by both cities must be evaluated to verify if they 

are related to time intervals that are effective during the time interval of the indicators. For 

example, if the population of Toronto was drawn from Toronto after the amalgamation in 1998, 

then for New York City the population must be drawn from New York City that is effective after 

1998. Dynamic place inconsistency G3, defined in Chapter 3, cannot be applied to evaluate 

transversal dynamic place inconsistency since Revision(mcity1
ij, mcity2

ik) forces mcity1
ij and mcity2

ik 

to measure the same city. Inconsistency G4 ensures that the indicator is linked to an interval that 

is during the effective time interval of the city being measured. Recall that indicator value and 

supporting data published by both City 1 and City 2 are definitional consistent, Thus effective 

time interval of placename instances measured by mcity1
ij, mcity2

ik must include the time interval of 

the indicators. However, if temporal inconsistency type T2(mcity1
ij, mcity2

ik) was detected to be 

true for instances mcity1
ij and mcity2

ik then the placename instances citycity1
i and citycity2

i may be 

linked to time intervals that do not overlap.  



95 

 

Any two instances mcity1
ij  Mcity1

i and mcity2
ik  Mcity2

i are potentially inconsistent in terms of 

transversal dynamic place inconsistency if the mcity1
ij and mcity2

ik are transversal temporally 

inconsistent according to T2(mcity1
ij, mcity2

ik) given that both Mcity1
i and Mcity2

i are definitional 

consistent. 

 

Defintion 32 Trans_G2. Transversal Dynamic Place Inconsistency 

The set of individuals Mcity1
i ⊆ Scity1

i is placename inconsistent with Mcity2
i ⊆ Scity2

i if any two 

instances mcity1
ij  Mcity1

i and mcity2
ik  Mcity2

i satisfy one of the following inconsistency types: 

Trans_G1.Admin Division inconsistency or Trans_G2. Transversal Dynamic Place 

inconsistency. In addition, mcity1
ij and mcity2

ik must not measure the same city.  

 

Defintion 33 Trans_PI. Place Inconsistency 

Trans_G2. Transversal Dynamic Place Inconsistency 

∀ mcity1
ij mcity2

ik  

  Cor_I(mcity1
ij, mcity2

ik) ∧ T2(mcity1
ij, mcity2

ik) 

⊃ Trans_G2(mcity1
ij, mcity2

ik)  

Trans_PI. Place Inconsistency 

∀ mcity1
ij mcity2

ik 

 Cor_I(mcity1
ij, mcity2

ik) ∧  

(¬G1(mcity1
ij, mcity2

ik) ∨Trans_G1(mcity1
ij, mcity2

ik) ∨ Trans_G2(mcity1
ij, mcity2

ik) ) 

⊃ Trans_PI(mcity1
ij, mcity2

ik) 



96 

 

 

4.1.4 Transversal Measurement Inconsistency 

Indicator’s supporting data and city specific knowledge published by two cities may disagree on 

the units of measure used. E.g., Toronto may use ‘population cardinality unit’ (pc) as the unit of 

measure of its Homeless population size measure while New York City uses ‘kilo-pc’ which 

measures the population size in 1000 times of the unit ‘pc’. Consistency of units should be 

checked for the indicator itself (e.g., 15.2 Homeless population size ratio), population size (a 

Quantity), and population size values (a Measure) to ensure that the units are consistent 

throughout indicator value and supporting data published by cities.  

In definitional consistency analysis, the unit of measure of the indicator data were evaluated to 

be definitional consistent with the indicator’s definition. For example, 15.2 indicator value 

published by Toronto links to an instance gci:population_ratio_unit. Supporting data homeless 

population size was linked to an instance gci:population_cardinality_unit (pc) and city 

population size was linked to ‘100 000th of pc’. In the case of Transversal consistency analysis 

indicators published by both cities were evaluated to be definitional consistent. Therefore both 

indicator values and supporting data are referring to the same instance gci:population_ratio_unit, 

pc, or ‘100 000th of pc’. Thus the unit of measure of quantities or measure are transversally 

consistent in terms of measurement if indicator value and supporting data from City 1 and City 2 

are both definitional consistent.  

4.2 Longitudinal Consistency Analysis 

Longitudinal consistency analysis evaluates if an indicator is consistent over different time 

intervals for the same city. For example, is the 15.2 indicator of Toronto published in 2013 

consistent with the same indicator published in 2015? 

In Longitudinal consistency analysis, we have indicator values and the supporting data used to 

derive them published by a city at time intervals inti and int’i, represented as instances of classes 

from indicator’s definition, theme general knowledge and city specific knowledge. Separate city 

specific knowledge is provided by the city for inti and int’i. Similar to Transversal consistency 

analysis, we assume ontologies that represent indicator definition, city specific and theme 



97 

 

specific knowledge are logically consistent and published indicator value and supporting data are 

definitional consistent. 

An indicator value and its supporting data, published by a city at interval int, are evaluated 

against corresponding data published at int’ by the same city. Similar to transversal consistency 

analysis, the correspondence between nodes of Sint
i and Sint’

i is represented using Cor_I(mint
ij, 

mint’
ik) where mint

ij and mint’
ij are primary instances of Sint

i and Sint’
i respectively. Table 9 below 

lists the notation used in longitudinal consistency analysis. Inter-indicator correspondence 

inconsistency (Inter_CI) may exist between the indicator data published by the cities if no 

correspondence Cor_I(mint
ij, mint’

ik) can be found for nodes mint
ij and mint’

ik. 

 

Table 9 Notation for longitudinal consistency analysis 

Published City Indicator Data and City Specific Knowledge 

• Let S be the set of all published indicator data 
• Let Oint be the City Specific ontology used in S at int 
• Let Oint’ be the City Specific ontology used in S at int’ 
• Let Sint

i be the graph that represents the data used to derive indicator i for the 
city at int 

• Let Sint’
i be the graph that represents the data used to derive indicator i for the 

city at int’ 
• Sint

i is composed of a set of attributes Aint
i, nodes Cint

i and nodes Mint
i 

• Aint
i is a set of properties in Sint

i 
• Mint

i is a set of individuals in Sint
i 

• Cint
i ⊆ class(Oint) ∪ indiv(Oint) ∪	literal (Oint) where  
• class(Oint) is the set of classes defined in Oint,  
• indiv(Oint) is a set of individuals in Oint and  
• literal(Oint) is a set of literals in Oint. 

• Sint’
i is composed of a set of attributes Aint’

i, nodes Cint’
i and nodes Mint’

i 
• Aint’

i is a set of properties in Sint’
i 

• Mint’
i is a set of individuals in Sint’

i 
• Cint’

i ⊆ class(Oint’) ∪ indiv(Oint’) ∪ literal (Oint’) where  
• class(Oint’) is the set of classes defined in Oint’, and  
• indiv(Oint’) is a set of individuals in Oint’ and 
• literal(Oint’) is a set of literals in Oint’. 

• Cintc
i ⊆ class(Oint) ⊆ Cint

i 
• Cint’c

i ⊆ class(Oint’) ⊆ Cint’
i 



98 

 

 

Figure 34 Indicator value and supporting data published by a city at different time comply 

with definition Di 

In the following sections we define a number of longitudinal inconsistency types. We assume all 

instances mint
ij  Mint

i and mint’
ik  Mint’

i are corresponding instances from interval int and int’. 

 



99 

 

4.2.1 Long_TC. Longitudinal Type Inconsistency 

City specific knowledge such as homeless person and homeless shelter may have changed over 

time. Indicator data may simply be published differently at different intervals. Similar to 

transversal consistency analysis, the corresponding classes defined in the city specific knowledge 

for the two time intervals will be evaluated.  

Type consistency in Longitudinal consistency analysis is essentially the same evaluation process 

as in transversal consistency analysis that evaluates mint
ij and mint’

ik 

 

Defintion 34 Long_TC. Longitudinal Type Inconsistency 

For example, suppose Toronto has changed its definition of homeless shelters by replacing 

treatment facilities with family shelters which was not part of the definition in 2013. In this case 

the 15.2 indicator of Toronto published in 2015 is inconsistent with its previous version 

published in 2013 and Long_TC(mint
ij, mint’

ik). 

4.2.2 Long_TI. Longitudinal Temporal Inconsistency 

Longitudinal consistency evaluation compares temporal concepts of an indicator published in 

different years. In particular, it compares the temporal units(T4) of the two intervals and the 

duration. 

Long_T1. Duration Inconsistency 

Duration inconsistency arises when the durations of the two intervals differ. Instances mint
ij and 

mint’
ik are inconsistent if their time intervals int and int’ have different duration. We specify the 

Long_TC. Longitudinal Type Inconsistency 

∀mint
ij mint’

ik 

Trans_TC(mint
ij, mint’

ik) 

⊃ Long_TC(mint
ij, mint’

ik) 



100 

 

predicate Dur(int, intDur) to represent that interval int has a duration intDur which is an instance 

of ot:DurationDescription. 

 

Defintion 35 Long_T1. Duration Inconsistency 

Definitional temporal inconsistency evaluates if the supporting data refer to the same time 

intervals as the indicator. Longitudinal duration inconsistency evaluates if two indicators are 

measured for time intervals with different durations. For example, Toronto’s 15.2 indicator 

would be longitudinally inconsistent if the indicator was measured semi-annually in 2013 but 

annually in 2015. In this case Long_T1(mint
ij, mint’

ik) is true where mint
ij and mint’

ik are indicator 

values published by Toronto for 2013 and 2015 respectively.  

The set of individuals Mint
i ⊆ Sint

i and Mint’
i ⊆ Sint’

i is temporal inconsistent if any two 

corresponding instances mint
ij  Mint

i and mint
ik  Mint’

i are inconsistent in terms of one of the 

following inconsistency types: Long_T1.Duration Inconsistency or T4.Temporal granularity 

inconsistency 

Long_T1. Duration Inconsistency 

∀ mint
ij mint’

ik inti int’
i intDuri intDur’

i 

 Cor_I(mint
ij, mint’

ik) ∧ 

 Type(inti,ot:Interval) ∧ Type(int’
i,ot:Interval)∧ 

 Time(mint
ij,inti) ∧ Time(mint’

ik,int’
i) ∧  

 Dur(inti, intDuri) ∧ Dur(int’
I, intDur’i) ∧ ¬Equal(intDuri, intDur’i)  

⊃ Long_T1(mint
ij, mint’

ik) 



101 

 

 

Defintion 36 Long_TI. Longitudinal Temporal Inconsistency 

4.2.3 Long_PI. Longitudinal Place Inconsistency 

An indicator is longitudinal place inconsistent if the placename referred at different time 

intervals differ.  In addition, cities may have changed over time. Any changes in the geographical 

location associated to the indicator or population that is part of the indicator data would make 

indicators inconsistent over time. Examples of geographical changes include city boundary 

changes or relocation of a city. 

Long_G1. Longitudinal Geometry Inconsistency 

The geometrical shape of a city’s boundary may change overtime, e.g., due to amalgamation. A 

city’s geometry can be represented as instances of geom:Geometry class linked to a place 

instance via the property geom:geometry (Norton, et al., 2012). 

Corresponding instances mint
ij  Mint

i and mint’
ik  Mint’

i are inconsistent due to geometry 

inconsistency if the place instances cityint
 and cityint’

 are linked to different instances of 

geom:Geometry. We use predicate Geo(cityint, geoint) to represent that cityint
 has a geometry 

geoint which is an instance of geom:Geometry. 

Long_TI. Longitudinal Temporal Inconsistency 

∀mint
ij mint’

ik 

 Long_T1(mint
ij, mint’

ik) ∨ T4(mint
ij, mint’

ik)  

⊃ Long_TI(mint
ij, mint’

ik) 



102 

 

 

Defintion 37 Long_G1. Longitudinal Geometry Inconsistency 

Long_G2. Longitudinal Coordinates Inconsistency 

The geographical coordinates (i.e., longitude and latitude) may also change for a city over time. 

Natural catastrophes or wars may result the relocation of a city or political entity. Geographical 

coordinates can be represented using properties from Basic Geo (WGS84 lat/long) Vocabulary 

(Brickley, 2006), i.e., wgs8423:long and wgs84:lat. Changes in a reference point, which is an 

instance of class wgs84:point, defined by geographical coordinates (e.g., the center) within the 

geometrical shape imply geographical inconsistency between indicators being compared in terms 

of geographical coordinates. 

Corresponding instances mint
ij  Mint

i and mint’
ik  Mint’

i are inconsistent due to coordinate 

inconsistency if the place instances cityint
 and cityint’

 are linked to different reference points pint
 

                                                 

23 http://www.w3.org/2003/01/geo/wgs84_pos# 

Long_G1. Longitudinal Geometry Inconsistency 

∀ mint
ij mint’

ik inti int’
i cityint cityint’ 

 Cor_I(mint
ij, mint’

ik) ∧  

 Type(inti,ot:Interval) ∧ Type(int’
i,ot:Interval)∧  

Type(cityint,sc:City) ∧ Type(cityint’,sc:City)∧ 

Type(geoint,geom:Geometry) ∧ Type(geoin’t,geom:Geometry)∧ 

 Time(mint
ij,inti) ∧ Time(mint’

ik,int’
i) ∧ Place(mint

ij, cityint)	∧ Place(mint’
ik, cityint’)	∧ 

 Geo(cityint, geoint) ∧ Geo(cityint’, geoint’) ∧ ¬Equal(geoint, geoint’
 )  

⊃ Long_G1(mint
ij, mint’

ik) 



103 

 

and pint’ within the city boundary. We use predicate Poi(cityint, pint) to represent that cityint
 has a 

reference point pint within its boundary. 

 

Defintion 38 Long_G2. Longitudinal Coordinates Inconsistency 

Other types of longitudinal place inconsistency include feature code inconsistency (Trans_G1) 

and dynamic place inconsistency (G3) which were both described previously. In section 4.1.3 we 

defined feature code inconsistency which evaluates the feature code associated with the city or 

its administrative divisions. Inconsistency Trans_G1 defined previously can be applied to mint
ij 

and mint’
ik to detect changes in the characteristic of the city or its administrative division over 

time. Placename instances cityint
 and cityint’

 linked to mint
ij and mint’

ik respectively are also linked 

to different time intervals. E.g Toronto [1967-1998] and Toronto[1998-] are considered as 

different placename instances. Recall that inconsistency G3(mint
ij, mint’

ik) is true if cityint
 is a 

revision of cityint’, i.e., same city linked to different time intervals, which is intended in 

longitudinal consistency analysis. Thus the negation of G3, i.e., ¬G3(mint
ij, mint’

ik) implies 

Long_G2. Longitudinal Coordinates Inconsistency 

∀ mint
ij mint’

ik inti int’
i cityint cityint’ 

 Cor_I(mint
ij, mint’

ik) ∧ 

 Type(inti,ot:Interval) ∧ Type(int’
i,ot:Interval)∧  

Type(cityint,sc:City) ∧ Type(cityint’,sc:City)∧ 

Type(pint,wgs84:point) ∧ Type(pin’t,wgs84:point)∧ 

 Time(mint
ij,inti) ∧ Time(mint’

ik,int’
i) ∧ Place(mint

ij, cityint)	∧ Place(mint’
ik, cityint’)	∧ 

 Poi(cityint, pint) ∧ Poi(cityint’, pint’) ∧ ¬Equal(pint, pint’
 )  

⊃ Long_G2(mint
ij, mint’

ik) 



104 

 

longitudinal place inconsistency between mint
ij and mint’

ik since cityint
 and cityint’

 are not revisions 

of the same city. 

 

Defintion 39 Long_PI. Longitudinal Place Inconsistency 

The set of individuals Mint
i ⊆ Sint

i is longitudinal placename inconsistent with Mint’
i ⊆ Sint’

i if any 

two instances mint
ij  Mint

i and mint’
ik  Mint’

i satisfy inconsistency types Long_G1 (Longitudinal 

Geometry Inconsistency), Long_G2 (Longitudinal Coordinates Inconsistency), Trans_G1 

(Feature Code Inconsistency), or do not satisfy G3 (Dynamic Place Inconsistency). 

4.2.4 Longitudinal Measurement Inconsistency 

A city should use the same unit of measure for indicator data published during different time 

periods. E.g., the unit of measure for population size should remain as ‘pc’ for indicator 

instances published in different years. Similar to transversal measurement inconsistency, if 

published indicator value and supporting data were evaluated to be definitional consistent, then 

the unit of measures are guaranteed to be consistent. 

4.3 Summary 

In this chapter we defined types of transversal and longitudinal inconsistencies of published city 

indicators. Transversal consistency analysis evaluates city indicators published by different cities 

at the same time interval, and longitudinal inconsistency evaluates city indicators published by 

the same city at different times. The inconsistency types defined in this chapter are summarized 

as follow. Note that only inconsistency types defined specifically for transversal and 

Long_PI. Longitudinal Place Inconsistency 

∀ mint
ij mint’

ik 

 Long_G1(mint
ij, mint’

ik) ∨	Long_G2(mint
ij, mint’

ik) ∨		

Trans_G1(mint
ij, mint’

ik) ∨ ¬G3(mint
ij, mint’

ik)  

⊃ Long_PI(mint
ij, mint’

ik) 



105 

 

longitudinally are shown here. Prolog implementation of each inconsistency types can be found 

in Appendix III. 

Correspondence Inconsistency: No correspondence have been detected between Primary nodes 

in the sets of city published indicator value and supporting data. 

Inconsistency  Description 

Inter_CI. 

Correspondence 

Inconsistency 

For any corresponding nodes mcity1
ij  Mcity1

i  and mcity2
ik ∊ Mcity2

i, or 

mint
ij  Mint

i and mint’
ik  Mint’

i in the case of longitudinal consistency 

analysis, there exists a class mcity2
iy or mint’

iy that is linked to mcity2
ik or 

mint’
ik via property ait where there is no instance mcity1

ix or mint
ix linked 

to mcity1
ij or mint

ij that corresponds to mcity2
iy or mint’

iy. 

Transversal and Longitudinal Type Inconsistency: Instances of published indicator data are 

type inconsistent if the instances are of types of classes that are not equivalent. 

Type Inconsistency  Description 

Trans_TC. Transversal 

Instance Type 

Inconsistency 

An instance mcity1
ij ∊ Mcity1

i is type inconsistent with its 

corresponding instance mcity2
ik ∊ Mcity2

i if mcity1
ij is an instance of a 

class ccity1i ∊ Ccity1
i and mcity2

ik is an instance of a class ccity2i ∊ Ccity2
i 

such that ccity1i is type inconsistent with ccity2i. 

Long_TC. Longitudinal 

Type Inconsistency 

Type consistency in Longitudinal consistency analysis is the same 

evaluation process as in transversal consistency analysis that 

evaluates mint
ij and mint’

ik 

Transversal and Longitudinal Temporal Inconsistency: Temporal instances of the two 

indicators represent the same time interval. E.g., temporal instances have same temporal unit. 

The values for year, month, etc. must be the same in transversal consistency analysis. Temporal 

inconsistency is evaluated to ensure that time intervals are not equal using inconsistency type T2 

defined in definitional consistency analysis for Transversal consistency analysis. For longitudinal 

consistency analysis, duration inconsistency needs to be evaluated. 



106 

 

Temporal 

Inconsistency 

Description 

Long_T1. 

Duration 

Inconsistency 

An instance mint
ij and mint’

ik are inconsistent if their time intervals int and 

int’ have different duration. We specify the predicate Dur(int, intDur) to 

represent that interval int has a duration intDur which is an instance of 

ot:DurationDescription. 

Transversal and Longitudinal Placename Inconsistency: Placename concepts are representing the 

same type geographical area, e.g., city, district, slum, etc. Transversal place inconsistencies 

include feature code inconsistency where the cities have different administrative features, or 

transversal dynamic placename inconsistency which considers the case where cities measured by 

the indicators were linked to different time intervals. Longituidinal place inconsistencies deal 

with Longitudinal geometry inconsistency and coordinates inconsistency which deals with the 

city boundary geotery and geographical coordinates respectively. 

Placename 

Inconsistency 

Description 

Trans_G1. Feature 

Code Inconsistency 

Any two instances mcity1
ij  Mcity1

i and mcity2
ik  Mcity2

i are potential 

inconsistent if instance of placename citycity1i  referred by mcity1
ij has an 

admin division feature that is different from the placename citycity2i 

referred by mcity2
ik 

Trans_G2. 

Transversal 

Dynamic Place 

Inconsistency 

Any two instances mcity1
ij  Mcity1

i and mcity2
ik  Mcity2

i are inconsistent if 

the Placename citycity1i referred by mcity1
ij is related to a different time 

interval as the placename citycity2i referred by mcity2
ik. Given that both 

Mcity1
i and Mcity2

i are defitionally consistent with indicator’s definition 

Di, mcity1
ij and mcity2

ik are inconsistent according to T2(mcity1
ij, mcity2

ik). 



107 

 

Long_G1. 

Longitudinal 

Geometry 

Inconsistency 

Corresponding instances mint
ij  Mint

i and mint’
ik  Mint’

i are inconsistent 

due to geometry inconsistency if the place instances cityint and cityint’ 

are linked to different instances of geom:Geometry.  

Long_G2. 

Longitudinal 

Coordinates 

Inconsistency 

Corresponding instances mint
ij  Mint

i and mint’
ik  Mint’

i are inconsistent 

due to coordinate inconsistency if the place instances cityint and cityint’ 

are linked to different reference points pint and pint’ within the city 

boundary. 

Transversal and Longitudinal Measurement Inconsistency: Unit of measure used by both 

indicators must be the same. For both transversal and longitudinal analysis, since both sets of 

indicator value and supporting data are definitional consistent, thus unit of measures must be 

equal if they are transversal or longitudinal type consistent.



 

108 

Chapter 5  
Implementation and Example 

 Implementation and Example 

In this chapter we describe the implementation of City Indicator Consistency Checker (CICC). 

We then describe an example for each of the definitional, transversal and longitudinal 

inconsistency types using the CICC. For our example, we use city indicator data and definitions 

for ISO 37120 15.2 homeless population ratio published by Toronto for 2013, 2015 and New 

York City for 2013. We also use fictional city specific ontologies and the GCI-Shelter theme 

ontology from the PolisGnosis project. 

5.1 City Indicator Consistency Checker 

CICC is implemented in SWI-Prolog (Wielemaker, Schrijvers, Triska, & Lager, 2012) version 

7.2.224. The Figure 35 below shows the architecture of CICC. It performs definitional, 

transversal or longitudinal consistency analysis based on user inputs through a web interface. 

The web interface allows users to uploaded their supporting data (instance file) in TTL (turtle) 

format, and their city specific ontology in OWL/RDF format. A second set of input files are 

required if transversal/longitudinal consistency analysis is to be performed. Users will then select 

the types of consistency analysis to be performed. The resulting analysis will then be returned to 

the user. 

                                                 

24 http://www.swi-prolog.org/versions.txt 



109 

 

 

Figure 35 CICC Architecture 

The CICC performs its analysis on following user input files: 

 Indicator definition: The file contains the definition of an indicator represented in 

OWL/RDF, etc. The indicator definition should consist of classes and properties that 

represent an indicator’s IRI, supporting data and relationships between them. E.g., 

iso37120:15.2 has numerator isos:15.2_homeless_population_size. The definition of 15.2 

indicator is shown in Figure 9.  

 Theme Knowledge: This file contains knowledge of theme specific knowledge 

represented using ontologies. E.g., GCI Shelters ontology, which contains classes that 



110 

 

represent the shelter themed knowledge used by 15.2 indicator’s definition such as 

gcis:Homeless_person and gcis:Homeless_shelter, etc. 

 City instance file: This file should contain instances of the indicator being evaluated and 

its supporting data. E.g., 15.2_trt_2013, trt_homeless_pop_size_2013, etc. 

 City definition file: This file should contain city specific knowledge of the city being 

evaluated, which contains classes such as Toronto homeless person and axioms that 

define the class. 

 Second instance file: For transversal consistency analysis, the indicator instances should 

be published by a different city (city 2) during the same year, whereas for longitudinal 

consistency, the instances should be published by the same city during a different year 

(time 2). This section should be left as blank in case of Definitional consistency analysis. 

 Second definition file: This files contains city specific definition of city 2 for transversal 

and time 2 for longitudinal consistency analysis. This section should be left as blank in 

case of Definitional consistency analysis. 

CICC imports and stores the information in a triplestore. All indicator values, supporting data 

and definitions represented using ontologies such as the GCIO are stored as RDF triples. This 

means that Prolog axioms can reason about instances, classes and properties as input data. For 

example, the triple (trt_homeless_pop, gci:located_in, geo:Toronto) can be queried using Prolog 

predicate rdf(trt_homeless_pop, gci:located_in, geo:Toronto). User interface of the CICC are 

shown below. Instance files in TTL format and theme and city specific ontologies in OWL/RDF 

are loaded into Prolog using rdf_load from Prolog’s Semantic Web library. Prefixes of each 

ontology were registered using rdf_register_prefix. Inconsistency types described in Chapter 3 

and 4 are evaluated using a set of Prolog predicates described in Appendix II. The resulting 

output is displayed in text format. Inconsistent instances and corresponding classes are indicated 

with the types of inconsistencies detected. Figure 37 below shows an example of result output 

text. 



111 

 

 

 

Figure 36 CICC User Interface 



112 

 

 

Figure 37 CICC Output Text 

Chapters 3 and 4 provide examples for each type of inconsistency. In this section we demonstrate 

definitional, transversal and longitudinal consistency analysis on complete sets of indicator 

instances coupled with their city specific ontologies. We reuse the indicator definitions and 

theme knowledge developed by the PolisGnosis project. Specifically, we import the ISO 37120 

city indicator definitions for the education, shelter and innovation themes. These in turn, use the 

GCI Foundation ontology and GCI theme ontologies such as GCI-Education, GCI-Shelter, and 

GCI-Innovation. Fictional data and ontologies, including city specific knowledge for Toronto 

and New York City, were created to demonstrate the consistency analysis process25. Appendix I 

                                                 

25 Published indicators for the City of Toronto do not contain sufficient detail to be used to evaluate the CICC.  See 
Fox & Pettit (2015) for more details. 



113 

 

lists OWL files for all indicators’ definitions and ontologies mentioned as well as the Prolog 

axioms. The prefixes registered are shown in Table 10 below. 

Prefix  Full URI 

gci   'http://ontology.eil.utoronto.ca/GCI/Foundation/GCI‐Foundation.owl#' 

gcis   'http://ontology.eil.utoronto.ca/GCI/Shelters/GCI‐Shelters.owl#' 

isos   'http://ontology.eil.utoronto.ca/GCI/ISO37120/Shelters.owl#' 

iso37120   'http://ontology.eil.utoronto.ca/ISO37120.owl#' 

ot  'http://www.w3.org/2006/time#' 

geo  'http://www.geonames.org/ontology/ontology_v3.1.rdf#' 

gd  'http://www.linkedgeodata.org/ontology/' 

sc  'http://schema.org/' 

kp  'http://ontology.eil.utoronto.ca/trust.owl#' 

om  'http://www.wurvoc.org/vocabularies/om‐1.8/' 

gs  'http://ontology.eil.utoronto.ca/govstat.owl#' 

pr  'http://www.w3.org/ns/prov#' 

tr  'http://ontology.eil.utoronto.ca/trust.owl#' 

gn  'http://sws.geonames.org/' 

sumo  'http://www.adampease.org/OP/SUMO.owl#' 

org  'http://ontology.eil.utoronto.ca/organization.owl#' 

ic  'http://ontology.eil.utoronto.ca/icontact.owl#' 



114 

 

gcis_trt  'http://ontology.eil.utoronto.ca/GCI/Shelters/Toronto/GCI‐Shelters_Toronto.owl#' 

gcis_nyc  'http://ontology.eil.utoronto.ca/GCI/Shelters/NewYork/GCI‐Shelters_NewYork.owl#' 

t2013  'http://ontology.eil.utoronto.ca/ISO37120/Toronto/2013/ISO37120_15_2013_TO.owl#'

n2013  'http://ontology.eil.utoronto.ca/ISO37120/NYC/2013/ISO37120_15_2013_NY.owl#' 

t2015  'http://ontology.eil.utoronto.ca/ISO37120/Toronto/2015/ISO37120_15_2015_TO.owl#'

Table 10 Prefix Registration 

Toronto has published a set of ISO 37120 indicator values for 2013 including 15.2 homeless 

population ratio (City of Toronto, 2014) in PDF format. As shown in Figure 38 below, in 2013 

the 15.2 indicator value was 190 per 100,000 population with a homeless population size value 

of 5,253. These values were used to create instances in TTL format according to 15.2 indicator 

definition and GCI Shelter ontology. Since Toronto does not have a city specific ontology, a 

fictional city specific ontology GCI Shelter-Toronto26 was created for the purpose of evaluating 

the CICC. Classes Toronto_homeless_person and Toronto_homeless_shelter were created based 

on descriptions from Toronto’s “2013 Street Needs Assessment Results” (City of Toronto, 

2013). Similarly, 15.2 indicator data was created based on the document “New York City 

Homeless Municipal Shelter Population, 1983-Present” (Coalition for the Homeless, 2016). A 

city specific ontology GCI Shelter-NYC27 was also created. 15.2 indicator value and city specific 

ontology for Toronto 2015 was created with arbitrary values and a modified version of GCI 

Shelter-Toronto. All files are listed in Appendix I. 

                                                 

26 Prefix: gcis-trt 

27 Prefix: gcis-nyc 



115 

 

 

Figure 38 ISO Indicator Data for Toronto 2013, adapted from City of Toronto (2014) 

 

5.2 Definitional Inconsistency Example 

We will use the ISO 37120 Shelter theme indicator 15.2 'Homeless population ratio’ indicator 

published by Toronto for the year 2013 as our example. The Figure 39 below depicts the 

structure of the 15.2 indicator instance and its supporting data following the ISO 37120 

definition described in Chapter 2. In order to represent this indicator, ’15.2_trt_2013’ was 

created as an instance of the class iso37120:’15.2’. It is linked to the individual geo:Toronto 

which is an instance of sc:‘City’ via gci:’for_city’. An instance of ot:’Interval’, ‘y2013’ which 

represents the year 2013 is linked to ’15.2_trt_2013’ via gci:’for_time_interval’. The actual 

measurement of the indicator, ’15.2_trt_2013_value’, was created as an instance of om:Measure 

class. The instance of om:Measure consists of the measurement's numeric value and its unit of 



116 

 

measure which is the instance gci:’population_cardinality_unit’ (pc). The indicator’s supporting 

data is represented as follows: ’15.2_trt_2013’ has a numerator ‘trt_homeless_pop_size_2013’ 

which is an instance of isos:’15.2_homeless_population_size’ that represents the homeless 

population size of Toronto for 2013. It is a cardinality of (gci:‘cardinality_of’) 

‘trt_homeless_pop_2013’ which is the homeless population in Toronto for 2013. 

‘trt_homeless_pop’ has a property gci:’located_in’ that points to the instance geo:’Toronto’ and 

it is defined by (gci:’defined_by’) ‘trt_homeless_person_2013’ which is an instance of 

isos:’15.2_Homeless_person’. 



117 

 

 

Figure 39 Published 15.2 indicator value and supporting data for Toronto 2013 



118 

 

 

Figure 40 ISO 37120 15.2 Indicator and Definition 



119 

 

For the purpose of demonstration, the following inconsistencies have been embedded in the 

example indicator data. 

Inconsistency  Instance or Class  Description 

TC2. Type 

Inconsistency 

y2013  y2013 should be an instance of 

ot:Interval. Instead, it is an instance 

of ot:DateTimeDescription 

TC1. Class Type 

Inconsistency 

gci‐trt:Toronto_homeless_shelter  Type inconsistent with 

gcis:Homeless_shelter class 

TC1. Class Type 

Inconsistency 

gci‐trt:Toronto_homeless_person  Type inconsistent with 

gcis:Homeless_person class since 

gci‐trt:Toronto_homeless_shelter is 

type inconsistent with 

gcis:Homeless_shelter class 

TC2. Instance 

Type 

Inconsistency 

trt_homeless_person_2013  gci‐trt:Toronto_homeless_person is 

type inconsistent with 

gcis:Homeless_person class 

T2. Interval 

Equality 

Inconsistency 

trt_homeless_pop_size_2013_value This value was generated at an 

interval that covers only part of 

2013 

G2. Subplace 

Inconsistency 

trt_homeless_pop_2013  The homeless population was drawn 

from (gci:located_in) some areas in 

Toronto 

M2. Indicator 

Component 

City_pop_size_2013  The city population size is measured 

in ‘pc’ instead of 100 000th of pc. 

M3 also applies.  



120 

 

Measurement 

Inconsistency 

Table 11 List of definitional inconsistencies in example 

Users will first enter the named of an instance and a definition class in the text field shown in 

Figure 36 which act as a starting instance and its corresponding definition class. In the case of 

our example, the inputs are instance 15.2_trt_2013 and class iso37120:15.2. Correspondence 

between supporting data instances and classes from definitions are detected using method 

defined in chapter 3. Next we outline the evaluation process of inconsistencies listed above 

performed by the CICC for definitional consistency analysis28. Transversal and Longitudinal 

consistency analysis examples are provided in section 5.3 and 5.4. 

Step 1. Instance: 15.2_trt_2013 

Correspondence Identification 

Corresponding definition class: iso37120:15.2 

Type Inconsistency Evaluation 

Result: TC2. Type inconsistent  

Description: the following inconsistencies have been detected in supporting data as 

shown in Figure 41 below. Thus the 15.2_trt_2013 is type inconsistent. Details about 

inconsistency evaluation for following instances are introduced in steps 2, 7, and 8. 

 TC2(y2013, ot:Interval) 

 TC1(gci-trt:Toronto_homeless_shelter, gcis:Homeless_shelter) 

 TC1(gci-trt:Toronto_homeless_person, gcis:Homeless_person) 

 TC2(trt_homeless_person_2013, gcis:Homeless_person) 

                                                 

28 For expository purpose, the steps outlined in this chapter differ from actual sequences of evaluation from the 
CICC. Please refer to Appendix II for Prolog axioms used in CICC. 



121 

 

 

Figure 41 CICC output for TC2(trt_homeless_person_2013, gcis:Homeless_person) 



122 

 

 

Figure 42 Type Consistency with City Definition 



123 

 

 

 

The values for each property must be instances of the class specified in the range restriction of 

the properties defined in iso37120:’15.2’ as listed in Table 12 below. The ‘Property’ column lists 

the properties associated with the class iso37120:15.2. The ‘Value’ column lists instances linked 

to the 15.2_trt_2013 via these properties. ‘Cardinality’ and ‘Restriction’ columns depict 

cardinality and range restrictions of the corresponding property defined by iso37120:15.2 which 

must be satisfied by values of 15.2_trt_2013. 

 

Property  Cardinali

ty 

Restriction  Value 

gci:’for_city’  exactly 1  sc:City  geo:’Toronto’ 

gci:’for_time_inter

val’ 

exactly 1  ot:Interval  y2013 

om:’unit_of_meas

ure’ 

exactly 1  gci:’population_ratio_unit’  gci:’population_ratio_unit

’ 

om:value  exactly 1  om:Measure  ’15.2_trt_2013_value’ 

om:numerator  exactly 1  isos:’15.2_Homeless_populatio

n_size’ 

‘trt_homeless_pop_size_

2013’ 

om:denominator  exactly 1  isos:’City_population_size’  ‘trt_city_pop_size_2013’ 

Table 12 Properties, values, and restrictions of 15.2_trt_2013 

CICC evaluates each of the instances listed above. For simplicity, we show only steps for 

instances where inconsistencies have been detected in this example. 



124 

 

 

Step 2. Instance: y2013 

Correspondence Identification 

Definition class: ot:Interval 

Type Inconsistency Evaluation 

Result: TC2. Type inconsistent  

Description: year2013 is an instance of ot:DateTimeDescription rather than ot:Interval.  

Step 3. Instance: 15.2_trt_2013_value 

Correspondence Identification 

Definition class: om:Measure 

Type Inconsistency Evaluation 

Result: No inconsistency detected  

Description: 15.2_trt_2013_value is an instance of om:Measure  

Temporal Inconsistency Evaluation 

Result: No inconsistency detected  

Description: 15.2_trt_2013_value is linked to y2013.  

Measurement Inconsistency Evaluation 

Result: No inconsistency detected  

Description: 15.2_trt_2013_value is linked to gci:population_ratio_unit.  

The CICC will then evaluate the numerator and denominator of 15.2_trt_2013. We will 

demonstrate the evaluation of its numerator, i.e., trt_homeless_pop_size_2013 



125 

 

Step 4. Instance: trt_homeless_pop_size_2013 

Correspondence Identification 

Definition class: isos:15.2_Homeless_population_size 

Type Inconsistency Evaluation 

Result: No Type inconsistency detected 

Description: trt_homeless_pop_size_2013 is an instance of 

isos:15.2_Homeless_population_size 

Measurement Inconsistency Evaluation 

Result: No Type inconsistency detected 

Description: trt_homeless_pop_size_2013 is linked to gci:population_cardinality_unit 

which is a numerator of gci:population_ratio_unit 

Step 5. Instance: trt_homeless_pop_size_2013_value 

Correspondence Identification 

Definition class: om:Measure 

Type Inconsistency Evaluation 

Result: No Type inconsistency detected 

Description: trt_homeless_pop_size_2013_value is an instance of om:Measure 

Temporal Inconsistency Evaluation 

Linked Interval: y2011 

Referenced interval: y2013 

Result: T2. Interval Equality Inconsistency, T1. Non-overlap Interval Inconsistency 



126 

 

 Description: trt_homeless_pop_size_2013_value is linked to y2011 which is not equal to 

y2013 referred by the indicator (Figure 43). T1 also applies since y2011 is before 

(ot:intervalBefore) y2013. 

 

Figure 43 Temporal inconsistency example 

Step 6. Instance: trt_homeless_pop_2013 

Correspondence Identification 

Definition class: isos:15.2_Homeless_population 

Type Inconsistency Evaluation 



127 

 

Result: No Type inconsistency detected 

Description: trt_homeless_pop _2013 is an instance of isos:15.2_Homeless_population 

Place Inconsistency Evaluation 

Linked Place: trt_downtown 

Referenced Place: geo:Toronto 

Result: G1. Place Equality Inconsistency, G2. Subplace Inconsistency 

Description: trt_homeless_pop_2013 is linked to trt_downtown which is not equal to 

geo:Toronto referred by the indicator. It is a subarea located in Toronto. The indicator is 

potentially inconsistent if a placename referred by its supporting data is an area within the city 

referred by the indicator since the instance homeless_pop_2013 may refer to areas that include 

only a portion of the areas within the city referenced by 15.2_trt_2013, i.e., geo:Toronto. Thus 

homeless_pop_2013 is potentially inconsistent with 15.2_trt_2013 due to subplace inconsistency 

G2. 



128 

 

 

Figure 44 Subplace inconsistency example 

Step 7. Instance: trt_homeless_person_2013 

Correspondence Identification 

Definition class: gcis:Homeless_person 

Type Inconsistency Evaluation 

Result: TC2. Instance Type Inconsistent 

Description: the following inconsistencies exist: 



129 

 

 TC1(gci-trt:Toronto_homeless_shelter, gcis:Homeless_shelter) 

 TC1(gci-trt:Toronto_homeless_person, gcis:Homeless_person) 

 TC2(trt_homeless_person_2013, gcis:Homeless_person) 

 TC3(trt_homeless_person_2013, gcis:Homeless_person) 

Toronto homeless person is type inconsistent with the definition of homeless person defined by 

ISO 37120 since Toronto’s homeless shelter types do not comply the homeless shelter types 

defined by ISO 37120. The value of gcis:livesIn for trt_homeless_person_2013 is 

trt_homeless_shelter_2013, it is type inconsistent the definition gcis:Homeless_shelter. Thus T3 

also applies to trt_homeless_person_2013 and gcis:Homeless_person. Evaluation of 

trt_homeless_shelter_2013 is shown below. 

Step 8. Instance: trt_homeless_shelter_2013 

Correspondence Identification 

Definition class: gcis:Homeless_shelter 

Type Inconsistency Evaluation 

Result: TC2. Instance Type Inconsistent 

Description: the following inconsistencies exist 

 TC1(gci-trt:Toronto_homeless_shelter, gcis:Homeless_shelter) 

 TC2(trt_homeless_shelter_2013, gcis:Homeless_shelter) 

Since gci-trt:Toronto_homeless_shelter was defined to be the union of emergency shelter, VAW 

shelter and treatment facility, each of the classes will be evaluated against gcis:Homeless_shelter 

class. Both emergency shelter and VAW shelter are subclass of gcis:Homeless_shelter but 

treatment facility is neither a subclass nor an equivalent class of gcis:Homeless_shelter. 

The denominator of the indicator, i.e., Toronto’s city population size of 2013 is evaluated with 

same process. In this example, we show only the measurement inconsistency occurred which 

was detected for the instance trt_city_pop_size_2013 which is shown below. 



130 

 

Step 9. Instance: trt_city_pop_size_2013 

Correspondence identification 

Definition class: gcis:City_population_size 

Type Inconsistency evaluation 

Result: TC3. Property Inconsistent 

Description: the unit of measure of trt_city_pop_size_2013 is 

gci:population_cardinality_unit instead of ‘100 000th of pc’ defined by the definition. 

Measurement Inconsistency Evaluation 

Result: M2. Indicator Unit Component Inconsistency 

Description: 15.2_trt_2013 is linked to gci:population_ratio_unit. The denominator of the 

gci:population_ratio_unit is ‘100 000th of pc’. This does not satisfy the unit of measure used by 

trt_city_pop_size_2013 which is the denominator of 15.2_trt_2013. 

As shown in Figure 45, gci:‘population ratio unit’, which has both its numerator and 

denominator as ‘population cardinality unit’. Since the indicator ’15.2_trt_2013’ has 

homeless_pop_size_2013 as its numerator and city_pop_size_2013 as denominator, the unit of 

measure associated with the population sizes must be gci:population_cardinality_unit and ‘100  

000th of pc’ respectively. In this example, city_pop_size_2013 is linked to pc instead of 100 

000th of pc therefore it is inconsistent in terms of M2. 

 



131 

 

 

Figure 45 Indicator Unit Component Inconsistency example 

Result: M3. Singular Unit Inconsistency 

 Description: Since ‘100 000th of pc’ is linked to ‘pc’ via property om:singular_unit. 

Inconsistency M3 also applies to the population size of Toronto in this case. 

5.3 Transversal Inconsistency Example 

We will use the 15.2 Global City Indicator as an example to illustrate our transversal consistency 

evaluator. We define 15.2_trt_2013 and 15.2_nyc_2013 as instances of 15.2 city indicator for 

Toronto and New York City respectively. We have already introduced 15.2_trt_2013 indicator 

instance previously. Modification has been made so that it is now definitional consistent with the 

15.2 indicator’s definition. Specifically, Toronto’s homeless person is defined to be a person who 

lives in an emergency shelter. Similarly, 15.2_nyc_2013 is an instance of the class iso37120:15.2 



132 

 

with its values of properties modeled to represent the 15.2 city indicator for New York City and 

it is definitional consistent with the indicator’s definition represented by the GCI Ontologies. In 

New York City, the homeless population census report generated by NYC Department of 

Homeless Service included families and single adults live in homeless shelters. (Coalition for the 

Homeless, 2013). In order to distinguish the time intervals referred by two cities, y2013_trt and 

y2013_nyc has been asserted to the indicators where y2013_trt is a subinterval of y2013_nyc. 

 

Figure 46 15.2 City Indicator data for Toronto 2013 

 



133 

 

 

Figure 47 15.2 City Indicator data for New York City 2013 

The following inconsistencies have been embedded into the indicator data for purpose of 

demonstration. 

 

Inconsistency  Instance or Class  Description 

Trans_TC. Type 

Inconsistency 

Toronto_homeless_person, 

NYC_homeless_person 

The homeless person definitions 

used different types of shelters 

therefore are transversally type 

inconsistent 



134 

 

T2. Interval 

Equality 

Inconsistency 

15.2_trt_2013, 15.2_nyc_2013  Time intervals referred by the 

indicators published by the two 

cities are different 

T3. Subinterval 

Inconsistency 

15.2_trt_2013, 15.2_nyc_2013  Interval referred by Toronto is a 

subinterval of that of NYC 

Trans_G1. Feature 

Code Inconsistency 

15.2_trt_2013, 15.2_nyc_2013  Feature code linked by the cities 

are P.PPLA and P.PPL 

Table 13 List of transversal inconsistencies in example 

The CICC takes instances of indicators published by two cities, i.e., 15.2_trt_2013 and 

15.2_nyc_2013. Correspondence are identified using methods defined in chapter 4.  

Step 1. Primary instance: 15.2_trt_2013 

Correspondence Identification 

Corresponding primary Instance: 15.2_nyc_2013 

Transversal Type Inconsistency Evaluation 

Result: Trans_TC. Inconsistent 

Description: the following inconsistencies exist: 

 Trans_TC(trt_homeless_shelter_2013, nyc_homeless_shelter_2013) 

 Trans_TC(trt_homeless_person_2013, nyc_homeless_person_2013) 

Transversal Temporal Inconsistency Evaluation 

Secondary instance: y2013_trt and y2013_nyc 

Result: T2. Interval Equality Inconsistent, T3. Subinterval Inconsistent 



135 

 

Description: y2013_trt and y2013_nyc are evaluated to be different intervals as shown in 

Figure 48 below. Specifically, Toronto published an indicator for January to June of 2013. While 

New York City publishes an indicator for the entire year. Both intervals uses ot:unitMonth as 

temporal unit. Thus T2(15.2_trt_2013, 15.2_nyc_2013) is true. In addition, since y2013_trt is 

also during (ot:intervalDuring) the y2013_nyc. T3(15.2_trt_2013, 15.2_nyc_2013) is also true 

since y2013_trt is a subinterval of y2013_nyc. 

 

 

Figure 48 Representation of 2013 from Toronto and NYC with ot:unitMonth 

Since both indicators are definitional consistent which means intervals referred by the supporting 

data are temporally consistent with y2013_trt and y2013_nyc. Therefore additional evaluations 

on time intervals are not necessary. CICC now evaluates place inconsistencies between 

15.2_trt_2013 and 15.2_nyc_2013. 

 

Transversal Place Inconsistency Evaluation 

Secondary instance: geo:Toronto and geo:NYC 

Result: Trans_G1. Feature Code Inconsistency 

Description: the instances of City linked by the indicators, i.e., geo:Toronto and 

geo:NYC, have different feature codes of ‘P.PPLA’ (in this case, a provincial capital) and 

‘P.PPL’ (a populated place) respectively.  



136 

 

CICC continues to evaluate the values of 15.2_trt_2013 and 15.2_nyc_2013 shown in Table 14 

below. We omit these processes as they follow the same procedure described in previous section. 

The CICC continues to evaluate the populations and their definitions. Recall that the definition 

of homelessness from the two cities are defined differently.  

 

Property  City 1  City 2 

gci:’for_city’  Toronto  New York City 

gci:’for_time_interval’  y2013_trt  y2013_nyc 

om:’unit_of_measure’  population_ratio_unit  population_ratio_unit 

om:value  15.2_trt_2013_value  15.2_nyc_2013_value 

om:numerator  trt_homeless_pop_size_2013 nyc_homeless_pop_size_2013

om:denominator  trt_city_pop_size_2013  nyc_city_pop_size_2013 

Table 14 Values of properties of 15.2_trt_2013 and 15.2_nyc_2013 

 

Step 2. Primary Instance: trt_homeless_person_2013 

Correspondence Identification 

Corresponding Instance: nyc_homeless_person_2013 

Transversal Type Inconsistency Evaluation 

Result: Trans_TC. Inconsistent 

Description: City specific definition differs for a homeless person. City specific definition 

of homeless person for the two cities are represented with the class Toronto_homeless_person 

and NYC_homeless_person respectively. For restriction of property gcis:livesIn, both cities are 



137 

 

restricted to have exactly one instance of the class Toronto_homeless_shelter and 

NYC_homeless_shelter. Recall that Toronto and NYC homeless shelter class are defined as 

shown below in Figure 49. 

 

Figure 49 Toronto and NYC Homeless Person 

The classes gcis:Emergency_single_adult_shelter and gcis:Emergency_family_shelter are both 

subclass of gcis:Emergency_shelter. In this case Toronto_homeless_person is inconsistent with 

NYC_homeless_person since the types of emergency shelters of NYC are single adult 

emergency shelter and family shelter which are subsets of shelters defined by Toronto.  

Since the homeless shelter used in the definition of homeless person are different between 

Toronto and New York City, the indicators are transversally inconsistent in terms of type 

inconsistency Trans_TC. The same inconsistency applies to the instance 

trt_homeless_shelter_2013. 

Step 3. Primary Instance: trt_homeless_shelter_2013 

Correspondence Identification 

Corresponding Instance: nyc_homeless_shelter_2013 

Transversal Type Inconsistency Evaluation 

Result: Trans_TC. Inconsistent 

Description: Since both instances are instances of classes that are not equal, 

Trans_TC(trt_homeless_shelter_2013, nyc_homeless_shelter_2013) is true. 



138 

 

Since the homeless shelter used in the definition of homeless person are different between 

Toronto and New York City, the indicators are transversally inconsistent in terms of type 

inconsistency (Trans_TC), transversal temporal inconsistency (Trans_TI) and feature code 

inconsistency (Trans_G1). 

5.4 Longitudinal Inconsistency Example 

For longitudinal consistency analysis we introduce indicator data published by Toronto for 2015. 

Similar to transversal consistency analysis, the class representation of city specific knowledge 

will be evaluated between the two versions of the indicator. Suppose Toronto has changed its 

definition of homeless shelters by replacing treatment facilities with family shelters which was 

not part of the definition in 2013. In this case the 15.2 indicator of Toronto published in 2015 is 

inconsistent with its previous version published in 2013. 

 

Figure 50 15.2 indicator value and supporting for Toronto in 2013 and 2015 

The following inconsistencies have been embedded into the indicator data for purpose of 

demonstration. 

 



139 

 

Inconsistency 

Type 

Instance or Class  Description 

Long_TC. Type 

Inconsistency 

Toronto_homeless_person_2013, 

Toronto_homeless_person_2015 

The homeless person 

definitions used different 

types of shelters in 2013 and 

2015 

Long_T1  15.2_trt_2013, 15.2_nyc_2013  The interval 2015 has a 

different duration as the 

interval representing 2013. 

Table 15 List of longitudinal inconsistencies in example 

 

Step 1. Primary Instance: 15.2_trt_2013 

Correspondence Identification 

Corresponding Instance: 15.2_trt_2015 

Longitudinal Type Inconsistency 

Result: Long_TC. Inconsistent 

Description: the following inconsistencies exist: 

Long_TC(trt_homeless_shelter_2013, trt_homeless_shelter_2015) 

Long_TC(trt_homeless_person_2013, trt_homeless_person_2015) 

Longitudinal Temporal Inconsistency 

Secondary instance: y2013_trt and y2015_trt 

Result: Long_T1. Duration Inconsistency 



140 

 

Description: Toronto’s 15.2 indicator is longitudinally inconsistent since the indicator 

was measured semi-annually in 2013 but annually in 2015. Figure 51 illustrates the case where 

both instances of y2013_trt and y2015_trt have the temporal unit ot:unitMonth, with y2013_trt 

covers the entire year of 2013 while y2015_trt covers only from January to June. Toronto’s 15.2 

indicator is therefore longitudinally inconsistent since the duration of time interval referred by 

the indicator in 2013 is different than the indicator published in 2015. Therefore 

Long_T1(15.2_trt_2013, 15.2_trt_2015) is true. 



141 

 

 

Figure 51 y2013 represents first half of 2013 



142 

 

Longitudinal Place Inconsistency 

Secondary instance: geo:Toronto 

Result: no inconsistency detected 

Description: since both indicators are measuring the same instance geo:Toronto. The 

indicator is longitudinally consistent in terms of place. 

CICC follows the same process for evaluation of supporting data instances as in transversal 

consistency analysis. We omit the steps taken by CICC until reaching the instances 

trt_homeless_person_2013 and trt_homeless_person_2015 where the following inconsistency 

occurs. 

Step 2. Primary Instance: trt_homeless_person_2013 

Correspondence Identification 

Corresponding Instance: trt_homeless_person_2015 

Longitudinal Type Inconsistency Evaluation 

Result: Long_TC. Inconsistent 

Description: the following inconsistencies exist: 

Long_TC(trt_homeless_shelter_2013, trt_homeless_shelter_2015) 

As shown in Figure 52, the original definition of homeless person in 2013 is shown on the left, 

the modified definition is on the right. The class Toronto_treatment_facility is inconsistent with 

the class Toronto_family_shelter. Therefore, the class Toronto_homeless_person published in 

2013 is also inconsistent with the modified Toronto_homeless_person class published in 2015. 

Therefore Long_TC(trt_homeless_person_2013, trt_homeless_person_2015) is true and 

therefore 15.2 indicator of Toronto is longitudinally type inconsistent. 

 



143 

 

 

Figure 52 Toronto_homeless_person 2013 vs 2015 

Step 3. Primary Instance: trt_homeless_shelter_2013 

Correspondence Identification 

Corresponding Instance: trt_homeless_shelter_2015 

Longitudinal Type Inconsistency Evaluation 

Result: Long_TC. Inconsistent 

Description: Since both instances are instances of classes that are not equal, 

Long_TC(trt_homeless_shelter_2013, trt_homeless_shelter_2015) is true. 

5.5 Summary 

In this chapter we have introduced the CICC implemented using SWI-Prolog. With indicator 

value and supporting data represented using city specific and theme ontologies such as GCIO, 

CICC is capable of trace through all instances of indicator value and supporting and evaluate 

definitional, transversal or longitudinal inconsistencies with respect to indicator’s definition, 

indicator data across different cities, or for the same city at different time intervals. We have 

demonstrated the working process of CICC using examples created based on 15.2 indicator result 

and homeless population size data collected by Toronto and New York City. Instances used in 

the example, as well as city specific and theme general ontologies (e.g., GCIO, GCI-shelters) are 

listed in Appendix I. A full list of Prolog predicates and descriptions are provided in Appendix 

II.



 

144 

Chapter 6  
Conclusion and Future Work 

 Conclusion and Future Work 

6.1 Summary and Contributions 

It is now possible to perform comparative analysis of city performance with the introduction of 

definition and adoption of city indicators, such as ISO 37120. The introduction of city ontologies 

provides a standard for openly publish both indicator definitions and the data used to derive their 

values. But the validity is still unknown when comparing indicator data. 

This research makes a critical contribution to enabling the comparative analysis of city 

performance.  Assuming that cities adopt a standard set of indicators (e.g., ISO 37120), and they 

adopt a standard set of ontologies for publishing their data on the Semantic Web (e.g., Global 

City Indicator Ontology), the results of this research makes it possible to determine whether the 

published data is consistent. If the data is not consistent, then analysis will be invalid. We have 

defined three categories of consistency analysis: 

1. Definitional consistency evaluates if data used to derive a city indicator is consistent 

with the indicator’s definition (e.g., ISO 37120).  

2. Transversal consistency evaluates if city indicators published by two different cities are 

consistent with each other.  

3. Longitudinal consistency evaluates if an indicator published by a city is consistent over 

different time intervals.  

Inconsistency types include: 

 Correspondence inconsistency: where a node of indicator data does not have 

correspondence with respect to indicator’s definition or another set of indicator data 

 Type inconsistency: the type and restrictions of properties of a node of indicator do not 

comply with indicator’s definition or another set of indicator data 



145 

 

 Temporal inconsistency: temporal data such as interval or time instants within a set of 

indicator data are not internally consistent, or inconsistent with corresponding temporal 

data of another set of indicator in the case of transversal and longitudinal consistency 

analysis 

 Place inconsistency: geographical data such as cities within a set of indicator data are not 

internally consistent, or inconsistent with corresponding temporal data of another set of 

indicator in the case of transversal and longitudinal consistency analysis 

 Measurement inconsistency: measurement data such as unit of measure within a set of 

indicator data are not internally consistent, or inconsistent with corresponding temporal 

data of another set of indicator in the case of transversal and longitudinal consistency 

analysis 

Consistency analysis detects actual inconsistencies where corresponding indicator data do not 

agree under any circumstances, e.g., comparison were made between incorrect definitions such 

as homeless shelters and treatment facility, or potential inconsistencies, such as temporal 

differences of measurements. 

6.2 Future Work 

Possible future research directions include the definition of additional inconsistency types and 

identification of sources of inconsistencies. Enriching the representation of indicator’s definition 

using theme and city specific ontologies enables the possibilities of identifying more 

inconsistency types or specify existing inconsistency types with more information. The next 

research objective is to further identify root-causes of difference in city indicator measurement 

both transversally and longitudinally.



 

146 

Bibliography 

 

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the 

ACM, 26(11), 832-843. 

Baclawski, K., Kokar, M. M., Smith, J. E., & Letkowski, J. (2001, July). Consistency checking 

of RM-ODP specifications. In Proceedings of the 1st International Workshop on Open Distribute 

Processing: Enterprise, Computation, Knowledge, Engineering and Realisation: In conjunction 

with ICEIS 2001 (pp. 17-26). ICEIS Press. 

Baclawski, K., Kokar, M. M., Waldinger, R., & Kogut, P. A., (2002). Consistency checking of 

semantic web ontologies, The Semantic Web—ISWC 2002 (pp. 454 459). Springer Berlin 

Heidelberg. http://link.springer.com/chapter/10.1007/3-540-48005-6_40 

Bohannon, P., Fan, W., Geerts, F., Jia, X., & Kementsietsidis, A. (2007, April). Conditional 

functional dependencies for data cleaning. In Data Engineering, 2007. ICDE 2007. IEEE 23rd 

International Conference on (pp. 746-755). IEEE. 

Belhajjame, K., Deus, H., Garijo, D., Klyne, G., Missier, P., Soiland-Reyes, S., & Zednik, S. 

(2012). PROV Model Primer. http://www.w3.org/TR/prov-primer 

Brickley, D. (2006). W3C Semantic Web Interest Group Basic Geo (WGS84 lat/long) 

Vocabulary, World Wide Web Consortium (W3C). https://www. w3. org/2003/01/geo. 

British Standards Institution, The (BSI) (2014), PAS 182 Smart city concept model – Guide to 

establishing a model for data interoperability. BSI Standards Publication. Available at: 

http://www.bsigroup.com/en-GB/smart-cities/Smart-Cities-Standards-and-Publication/PAS-182-

smart-cities-data-concept-model/ 

Capadisli, S., Auer, S., Ngonga Ngomo, A-C., (2013), “Linked SDMX Data: Path to high fidelity 

Statistical Linked Data for OECD, BFS, FAO and ECB”, Submitted to Semantic Web, IOS 

Press. 



147 

 

City of Toronto, (2013), 2013 Street Needs Assessment Results, 

http://www.toronto.ca/legdocs/mmis/2013/cd/bgrd/backgroundfile-61365.pdf 

City of Toronto. (2014), “Toronto's 2013 Results Under ISO 37120 Indicators of City Service 

Delivery and Quality Of Life”, available at: 

https://www1.toronto.ca/City%20Of%20Toronto/City%20Managers%20Office/Toronto%20Pro

gress%20Portal/ISO%2037120/Final%20-%20Summary%20of%20Toronto's%20WCCD-

%20ISO%2037120%20Results-6%20.pdf 

City Protocol Agreement (CPA), (2015a), City Anatomy: A Framework to support City 

Governance, Evaluation and Transformation, CPA-I_001_Anatomy, 

http://www.cptf.cityprotocol.org/ancha/CPA-I_001_Anatomy.pdf 

City Protocol Agreement (CPA), (2015b), City Anatomy Indicators, CPA-PR _002_Anatomy 

Indicators, http://www.cptf.cityprotocol.org/CPAPR/CPA-PR_002_Anatomy_Indicators.pdf 

City Protocol Agreement (CPA), (2016), Foundation Ontology for the City Anatomy, CPA-

PR_003_Anatomy Ontology, http://cityprotocol.org/wp-

content/uploads/2015/09/Ontology_City-Anatomy.pdf 

Coalition for the Homeless (2016), New York City Homeless Municipal Shelter Population, 

1983-Present, Advocacy Department, available at: 

http://www.coalitionforthehomeless.org/basic-facts-about-homelessness-new-york-city/ 

Cong, G., Fan, W., Geerts, F., Jia, X., & Ma, S. (2007, September). Improving data quality: 

Consistency and accuracy. In Proceedings of the 33rd international conference on Very large 

data bases (pp. 315 326). VLDB Endowment. 

Cooper, B. (1995). “Shadow people: the reality of homelessness in the 90s”, URL: gopher:// 

csf.colorado.edu: 70/ 00/ hac/ homeless/ Geographical- Archive/reality-australia on 14 June, 

1999. 

Costello, J., Canestraro, D. S., Gil-Garcia, J. R., & Werthmuller, D. (2007). Using XML for Web 

Site Management: Lessons Learned Report. 

 



148 

 

Cyganiak, R., Reynolds, D., (2014), The RDF data cube vocabulary. Candidate 

Recommendation, W3C. 

Dirks, S., & Keeling, M. (2009). A vision of smarter cities. IBM Institute for Business Value. 

Dirks, S., Keeling, M., & Dencik, J. (2009). How smart is your city?: Helping cities measure 

progress. IBM Institute for Business Value, IBM Global Business Services, New York. 

Etzion, O., & Dahav, B. (1998). Patterns of self-stabilization in database consistency 

maintenance. Data & knowledge engineering, 28(3), 299-319. 

Falodi, J., & Fox, M. S. (2015). A health ontology for global city indicators (ISO 37120). 

Working paper. Enterprise Integration Laboratory, University of Toronto. 

Freitas, F., Candeias Jr, Z., & Stuckenschmidt, H. (2011). Towards checking laws' consistency 

through ontology design: the case of Brazilian vehicles' laws. Journal of theoretical and applied 

electronic commerce research, 6(1), 112-126. Chicago  

Forde, A., & Fox, M. S. (2015). An innovation ontology for global city indicators. Working 

paper. Enterprise Integration Laboratory, University of Toronto, http://eil.mie.utoronto.ca/wp-

content/uploads/2015/06/GCI-Innovation-Ontology-v15.pdf 

Fox, M.S., (2013), “A Foundation Ontology for Global City Indicators”, Working Paper, 

Enterprise Integration Laboratory, University of Toronto, Revised: 16 May 2015. 

Fox, M.S., (2015a), “Polisnosis Project: Ontologies For City Indicators”, Mechanical and 

Industrial Engineering Department, University Of Toronto, 

http://eil.utoronto.ca/smartcities/papers/PolisGnosis-11mar2015.pdf 

Fox, M.S., (2015b), “An Education Ontology for Global City Indicators (ISO 37120)”, 

Mechanical and Industrial Engineering Department, University Of Toronto, 

http://eil.utoronto.ca/smartcities/papers/GCI-Education.pdf 

Fox, M. S., (2015c), “The role of ontologies in publishing and analyzing city indicators”, 

Computers, Environment and Urban Systems, 54, 266-279. 



149 

 

 

Fox, M.S., and Grüninger, M., (1998), "Enterprise Modelling", AI Magazine, AAAI Press, Fall 

1998, pp. 109-121. 

Fox, M.S., Barbuceanu, M., Gruninger, M., and Lin, J., (1998), "An Organisation Ontology for 

Enterprise Modeling", In Simulating Organizations: Computational Models of Institutions and 

Groups, M. Prietula, K. Carley & L. Gasser (Eds), Menlo Park CA: AAAI/MIT Press, pp. 131-

152. 

Fox, M.S., and Huang, J., (2003), “Knowledge Provenance: An Approach to Modeling and 

Maintaining the Evolution and Validity of Knowledge”, EIL Technical Report, University of 

Toronto. 

Fox, M.S., and Huang, J., (2005), "Knowledge Provenance in Enterprise Information", 

International Journal of Production Research, Vol. 43, No. 20. 

Freitas, F., & Lins, F. (2012). The Limitations of Description Logic for Mathematical 

Ontologies: An Example on Neural Networks. In ONTOBRAS-MOST (pp. 84-95). Available at: 

http://ceur-ws.org/Vol-938/ontobras-most2012_paper7.pdf 

Geppert, A., & Wimmers, E. L., (2000), Consistency Constraints in Database Middleware. 

Global City Indicators Facility (2010a). “Overview Report of the Global City Indicators 

Facility”, GCIF, University of Toronto. 

Global City Indicators Facility (2010b). “Global City Indicators©: Definitions and 

Methodologies” September 2010, GCIF, University of Toronto. 

Grau, B. C., (2006), “OWL 1.1 Web Ontology Language Tractable Fragments”, The University 

of Manchester, http://www.w3.org/Submission/owl11-tractable/ 

Hausenblas, M., Halb, W., Raimond, Y., Feigenbaum, L., & Ayers, D. (2009). “Scovo: Using 

statistics on the web of data.” In The Semantic Web: Research and Applications (pp. 708- 722). 

Springer Berlin Heidelberg. 



150 

 

Hoornweg, D., Nunez, F., Freire, M., Palugyai, N., Herrera, E.W., and Villaveces, M., (2007), 

“City Indicators: Now to Nanjing”, World Bank Policy Research Working Paper 4114. 

Horridge, M., Parsia, B., & Sattler, U. (2009, September). Explaining inconsistencies in OWL 

ontologies. In International Conference on Scalable Uncertainty Management (pp. 124-137). 

Springer Berlin Heidelberg. 

Horrocks, I. (1999). FaCT and iFaCT. Description logics, 22. Chicago  

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004). SWRL: 

A semantic web rule language combining OWL and RuleML. W3C Member submission, 21, 79. 

Hunter, A., & Konieczny, S. (2005). Approaches to measuring inconsistent information. In 

Inconsistency tolerance (pp. 191-236). Springer Berlin Heidelberg. 

Hunter, A., & Konieczny, S. (2006). Shapley Inconsistency Values. KR, 6, 249-259. 

Hunter, A., & Konieczny, S. (2008). Measuring Inconsistency through Minimal Inconsistent 

Sets. KR, 8, 358-366. 

ISO37120, (2014), “ISO 37120: Sustainable Development of Communities – Indicators for City 

Services and Quality of Life”, International Organization for Standardization, First Edition, 

2014-05-15, ISO37120:2014(E). 

Mariuţa, Ş. (2014). Principles of Security and Integrity of Databases. Procedia Economics and 

Finance, 15, 401-405. Chicago  

Martinez-Cruz, C., Blanco, I. J., & Vila, M. A. (2011). Ontologies versus relational databases: 

are they so different? A comparison. 

McCarney, P. L., (2011) “Cities and climate change: The challenges for governance” 

Coordinating Lead Author with H. Blanco, J. Carmin and M. Colley, Ch 9 in Climate Change 

and Cities: First Assessment Report of the Urban Climate Change Research Network, Cambridge 

University Press. 



151 

 

Mendel-Gleason, G. E., Brennan, R., & Feeney, K., (2015), “Ontology Consistency and Instance 

Checking”, available at: http://ceur-ws.org/Vol-1376/LDQ2015_paper_03.pdf 

Motik, B., Sattler, U., & Studer, R. (2005). Query answering for OWL-DL with rules. Web 

Semantics: Science, Services and Agents on the World Wide Web, 3(1), 41-60. 

Norton, B., Vilches, L. M., Len, A. D., Goodwin, J., Stadler, C., Anand, S., Harries, D., 

VillaznTerrazas, B., and Atemezing, G. A. (2012). NeoGeo Vocabulary Specification – Madrid 

Edition. Juan Martin Salas and Andreas Harth (editors), http://geovocab.org/doc/neogeo/ 

OECD, (2013). Main Economic Indicators (MEI), 

https://stats.oecd.org/glossary/detail.asp?ID=1577 

Pan, F., & Hobbs, J. R. (2004, March). Time in owl-s. In Proceedings of the AAAI Spring 

Symposium on Semantic Web Services (pp. 29-36). 

Parsiaa, B., Sirinb, E., Graua, B. C., Ruckhausa, E., & Hewlettb, D. (2005). Cautiously 

approaching SWRL. University of Maryland, Tech. Rep. 

Patel-Schneider, P. F., Hayes, P., and Horrocks, I., (2004), OWL web ontology language 

semantics and abstract syntax. W3C Recommendation. Available at http://www.w3.org/TR/owl-

semantics/ 

Rijgersberg, H., Wigham, M., and Top, J.L., (2011), “How Semantics can Improve Engineering 

Processes: A Case of Units of Measure and Quantities”, Advanced Engineering Informatics, Vol. 

25, pp. 276-287. 

Rijgersberg, H., van Assem, M., & Top, J. (2013). Ontology of units of measure and related 

concepts. Semantic Web, 4(1), 3-13. 

Sattler U., Stevens R., Lord P., (2014), How does a reasoner work?. Ontogenesis. 

http://ontogenesis.knowledgeblog.org/1486 

Sean Bechhofer, Ian Horrocks, Carole Goble, Robert Stevens. OilEd: a Reason-able Ontology 

Editor for the Semantic Web. Proceedings of KI2001, Joint German/Austrian conference on 

Artificial Intelligence, September 19-21, Vienna. Springer-Verlag LNAI Vol. 2174, pp 396--408. 



152 

 

2001. Available at: http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2001/oiled-

dl.pdf 

Shearer, R., Motik, B., & Horrocks, I., (2008), “HermiT: A Highly-Efficient OWL Reasoner”, In 

OWLED (Vol. 432, p. 91). 

Smith, A. D. (2011). IBM Intelligent Operations Center key performance indicators (KPIs), Part 

1: Defining a low-level KPI. Available at: 

http://www.ibm.com/developerworks/industry/library/ind-iockpi1/ind-iockpi1-pdf.pdf 

Smith, A. D. (2013). IBM Intelligent Operations Center KPI Implementers Guide for Websphere 

Software. Document version, 1. 

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y., (2007), “Pellet: A practical owl-dl 

reasoner”, Web Semantics: science, services and agents on the World Wide Web, 5(2), 51-53. 

Tsarkov, D., & Horrocks, I. (2006), “FaCT++ description logic reasoner: System description”, In 

Automated reasoning (pp. 292-297). Springer Berlin Heidelberg. 

Uceda-Sosa, R., Srivastava, B., and Schloss, B., (2011), “Building a Highly Consumable 

Semantic Model for Smarter Cities”, In Proceedings of the workshop on AI for an Intelligent 

Planet, ACM. 

Uceda-Sosa, R., Srivastava, B., and Schloss, B., (2012b), “Using Ontologies to make Smart 

Cities Smarter”, Available at: http://researcher.ibm.com/researcher/files/us-

rschloss/SemTech_SCRIBE_2012Jun_V2.ppt 

United Nations Centre for Human Settlements (UN-Habitat) (2000), “Strategies to combat 

homelessness”, Nairobi, Kenya, 

http://ww2.unhabitat.org/programmes/housingpolicy/documents/HS-599x.pdf 

Wang, Y., Fox, M.S., (2015), “A Shelter Ontology for Global City Indicators (ISO 37120)”, 

Enterprise Integration Laboratory, University of Toronto, Working Paper. 



153 

 

Welty, C., McGuinness, D. L., & Smith, M. K. (2004). Owl web ontology language guide. W3C 

recommendation, W3C (February 2004) http://www. w3. org/TR/2004/REC-owl-guide-

20040210. 

Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). Swi-prolog. Theory and Practice 

of Logic Programming, 12(1-2), 67-96.



 

154 

Appendix I – List of Files 

Global Cities Indicator Ontologies 

ISO37120 Indicator Identifier Ontology: http://ontology.eil.utoronto.ca/ISO37120.owl 

Global City Indicator Foundation Ontology: 

http://ontology.eil.utoronto.ca/GCI/Foundation/GCI-Foundation.owl 

Global City Indicator Education Ontology: http://ontology.eil.utoronto.ca/GCI/Education/GCI-

Education.owl 

Global City Indicator Shelter Ontology: http://ontology.eil.utoronto.ca/GCI/Shelters/GCI-

Shelters.owl 

ISO 37120 Indicator Definitions 

ISO 37120 Education Theme Indicators Definitions: 

http://ontology.eil.utoronto.ca/GCI/ISO37120/Education.owl 

ISO 37120 Shelter Theme Indicators Definitions: 

http://ontology.eil.utoronto.ca/GCI/ISO37120/Shelters.owl 

City of Toronto 2013 ISO 37120 Indicators 

Education Theme Indicators: 

http://ontology.eil.utoronto.ca/ISO37120/Toronto/2013/ISO37120_6_2013_TO.ttl 

Shelter Theme Indicators: 

http://ontology.eil.utoronto.ca/ISO37120/Toronto/2013/ISO37120_15_2013_TO.ttl 

 

The following files contain fiction data and ontologies used for the purpose of testing the CICC 

City Specific Ontologies 

GCI Shelter Toronto: GCI-Shelters_Toronto.owl 



155 

 

GCI Shelter New York City: GCI-Shelters_NYC.owl 

Toronto 15.2 Indicator 

15.2_trt_2013_instance.ttl 

15.2_trt_2015_instance.ttl 

New York City 15.2 Indicator 

15.2_nyc_2013_instance.ttl 

 

City Indicator Consistency Checker 

The following files contain the source code of the CICC. Axioms from prolog-utilities.pl, OWL-

axioms.pl and OT-axioms.pl are adapated from professor Mark S. Fox at the University of 

Toronto. 

 OWL-axioms.pl 

 OT-axioms.pl 

 prolog-utilities.pl 

 consistency_utilities.pl 

 consistency_internal.pl 

 consistency_cardinality.pl 

 consistency_definitional.pl 

 consistency_transversal.pl 

 consistency_longitudinal.pl 

 consistency_trans_support.pl 



 

156 

Appendix II – CICC Refernce Manual 

User Instruction 

To upload files, run fileupload.pl. This will start file uploading portal. 

To start CICC user interface, run startui.pl. This will start UI in Prolog where users can enter 

target instance/class names. 

To start directly in SWI-Prolog, run [‘regPrefix’]. 

To output result to a file, use the following, for example,  

 ?- tell('output.txt'),check_def_list_start('15.2_trt_2013'),told,!. 

To display detailed trace and debug information, turn gci_trace on. 

 ?- gci_trace(on). 

Definitional consistency. 

To check definitional consistency of an instance. Query the following predicate: 

E.g. for ’15.2_trt_2013’ and corresponding definition class is37120:15.2 

 ?- check_def_start(’15.2_trt_2013’, iso37120:’15.2’). 

For each node, results will display as: 

Instance type consistency: Pass or Fail 

Cardinality check: Pass or Fail or ‘Does not have cardinality restriction’ 

Result for internal consistency for Placename, Temporal and Units can be found at the end of 

display. 

Transversal Consistency 

 ?- check_trans_list_start(’15.2_trt_2013’,’15.2_nyc_2013’). 



157 

 

Note: The query will fail if the ‘Year’ values (gci:’for_time_interval’) for two instances are 

different. 

Longitudinal Consistency 

 ?- check_long_list_start(’15.2_trt_2013’,’15.2_trt_2015’). 

Note: The query will fail if the ‘Year’ values (gci:’for_time_interval’) for two instances are the 

same and values for ‘City’ are different. 

Testing 

To automate error generation, call  

 ?- loop_test(N) 

where N is the number of runs. Result will be stored in output file output’N’.txt under current 

directory. 

Note: currently this only runs test for definitional consistency. Transversal and longitudinal test 

can be run manually with the following predicates. 

 ?- tell('output_trans.txt'), auto_error, 

 check_trans_list_start('15.2_trt_2013','15.2_nyc_2013'),told,!. 

 ?- tell('output_long.txt'), auto_error, 

 check_long_list_start('15.2_trt_2013','15.2_trt_2015'),told,!. 

Note: there is a slight chance that loop_test/1 will run into an infinite loop. This occurs when 

auto_error/0 creates a loop in values in one of the instances. E.g. (X, p1, Y), (Y, p2, X). 

Predicate Description 

regPrefix.pl 

initialization file 

 



158 

 

consistency_utilities.pl 

owl_triples(?Class, ?Property, ?Range) 

 Retrieve owl triples in the form of (Class, Property, Range) since rdf (Sub, P, Obj) works 

only on individuals. Triples are defined as Restrictions by assigning an abstract class in 

OWL.E.g. rdf(gci:‘Population_size’,gci:’cardinality_of’,X) will return false. Cardinality 

information is omitted. It is based on owl_range_restriction/3 but it covers all restriction type 

instead of owl:’onClass’ only and will also retrieve information about inherited properties and 

range restriction. 

owl_triples_union(?Class, ?Property, ?UnionList, ?List) 

class_union(?Class, ?UnionList) 

 Extract each classes in a union into a list 

owl_disjoint_class(?Class1, ?Class2) 

 returns true if ?Class1 and ?Class2 are disjoint classes or are subclasses of two disjoint 

classes. 

combine_two_list(?List1, ?List2, ?ListCombined) 

 Combine two separate lists into a single list. 

units_compatable(Xunit,Yunit) 

 Xunit and Yunit are units. They are compatible if Xunit is a subclass of Yunit, or the 

singular unit of Xunit is a subclass of Yunit. 

units_ins_match(X,P,Y) 

 The units of X and Y are related with P given that X P Y. X and Y are instances (of 

Quantity), P is a property relating X and Y. The units of X and Y must also have a relationship P 

between them. For example, pc is numerator of Population Ratio Units, homeless pop size is 



159 

 

numerator of 15.2 indicator. The pairs (15.2, homeless pop size) and (Population ratio units, pc) 

are both related with om:numerator. 

consistency_definitional.pl 

class_prop(?Class, ?PList) 

 return all properties of ?Class and store in ?PList. 

class_range(?Class, ?Property ?NList) 

 return all range restrictions of ?Property associated with ?Class and store in ?NList. 

leaf_node(?Class) 

 True if ?Class does not have any properties. 

class_individual_prop(?Instance ?Class ?List) 

 Return all properties of ?Instance as defined by ?Class and store the properties in a ?List. 

setof/3 was used with template being the intersection of ?Prop from owl_triplets/3 and rdf/3. 

Only properties that exist in the triples of ?Instance are returned since required properties can be 

checked through cardinality checks. 

class_individual_value (?Instance ?Property ?List) 

 For a ?Property of ?Instance, return all values and store in a ?List. Calls setof/3. For 

testing purpose only. Not used anymore. 

rdf_iso_list(?Class, ?Def, ?PList, ?NestedList, ?NDefList) 

 Return all ranges of all properties from ?PList of ?Class and store into ?NestedList. 

Return all ranges of all properties from ?PList of ?Def and store into ?NDefList This is a 

recursive call of bagof/3 until end of list is reached. This is used to retrieve triples with properties 

of interest only (exists in both ?Class and ?Def). 



160 

 

 ?NestedList is a nested list but it will catch all values of the same property. E.g. 

Homeless person livesIn Shelter1, Shelter2, etc will be stored in a list as [[Shelter1, 

Shelter2,..],[…]]. This list will be flatten in generate_list_iso/2 

 This predicate will fail out when, for example, owl_triples(X, for_city_service, Y) where 

Y doesn't exist. But this is always called after class_individual_prop/3 where each property in 

[H|T] was ensured to have a value. 

generate_list_iso(?Class, ?Def, ?PList, ?NList, ?DefList) 

 Return all range restriction that is linked to ?Class via properties from ?PList as ?NList, 

and all range restrictions from ?Def as ?DefList. This predicate is a calls rdf_out_list/3. 

?NestedList passed from rdf_iso_list/3 is flattened in this predicate. 

check_iso_list(?List, ?List2) 

 ?List is the list of elements to evaluate with respect to definition class in ?List2. Evaluate 

definitional consistency of all element in the list. Evaluation has two parts: 

 Instance type check: check if an individual is an instances of the correct class as specified 

in definition. Calls check_def/2 predicate with respect to each instance in ?List. 

 Cardinality check: check the cardinality of each property and compare with the 

cardinality restriction from the definition. Calls check_def_card/1 for each instance in 

?List. 

 It then generates a list (NList) and a list of classes from the definition DefList of values 

of current instance by calling generate_list_iso/5. NList is appended to (calls append/3) the tail 

of ?List as NewList. DefList is appended to (calls append/3) the tail of ?List2 as NewDefList. 

Recursively call itself with respect to NewList and NewDefList. The base case is 

check_def_list([]). 

Check_def (?Class, ?Def) 

Check if ?Class is an individual of, subclass of, or equal to ?Def. Both ?Class and ?Def are 

classes. 



161 

 

Check_def (X, ?Def) 

 ?Def is the definition class such as iso37120:15.2. For each X, X can be a class or an 

instance, checks according to follow: 

 if X is an instance then evaluate its type by check_def_class/2  

 if X is a class then evaluate itself with check_def_class/2  

check_def_class_prop (?Class, ?Def) 

 This predicate evaluates if ?Class has all properties and range restriction specified by 

?Def. checks if ?Class and ?Def are disjoint classes or a leaf, if true then fail, else continue. Get 

properties of ?Def with class_prop/2 and store as PList. Evaluate all properties in PList with 

check_all_prop/3. 

check_all_prop(?Class, ?Def, PList) 

 Get range restriction of property of the definition ?Def with owl_triples(?Def, P, V). Get 

all range restriction of ?Class with class_range/2 and store all restrictions as NList. Evaluate all 

elements in NList with respect to V using check_all_value/4. Runs recursively until PList is 

empty. 

check _all_value(?Class, ?Property, ?Val, NList) 

 Evaluate each element in NList with respect to ?Val using check_def_class/2 or 

check_def_class_prop/2. Making sure all range restriction of ?Class is consistent with ?Val. 

Runs recursively until NList is empty. 

check_def_card(?Instance) 

 Check the cardinality of each property and compare with the cardinality restriction from 

the definition. Check the ‘Type’ of ?Instance with rdf/3. Get list of properties of ?Instance with 

cardinality restrictions. Calls class_pcard_prop/3. If false, then return a message indicating that 

there is no cardinality restriction on the property. Check cardinality restrictions with 

check_def_all_pcard/3 



162 

 

Check_def_list_start(?Instance, ?Class) 

 First predicate to call. Check the first node with check_def/2 and check_def_card/1  and 

generate a list of values and pass into check_iso_list/1 

check_time_city_def(?Instance) 

 check if placename and temporal values of ?Instance are internally consistent. Calls 

time_city_consistent/3 

class_pcard_prop(?Instance,?Class, ?List) 

 Similar to class_individual_prop/3 but return only properties with cardinality restrictions 

and store in ?List. 

check_def_all_pcard(?Instance, ?Class, ?List) 

 ?List is a list of properties. For an instance, check the cardinality of values of all of its 

properties with cardinality restrictions. Return the value of cardinality restriction of ?Class for 

head of ?List which is a property. Calls owl_prop_cardinality/5 Count the number of triples that 

satisfy rdf(?Instance, property, _) and match the number with cardinality restrictions. Calls 

inst_pcard_check/6 Recursively call check_def_all_pcard/3 with ?List replaced by tail of ?List. 

 

Consistency_Internal.pl 

find_all_related_start(?instance, ?List) 

 Calls find_all_related/2. 

find_all_related(?List, ?ResultList) 

 For an instance, return all values that are related to it via any property. Results are stored 

in a list. Find all values of ?Instance. Calls generate_list_def/2. Append generated list 

Recursively generating list of values 

find_all_city(?Instance,?List) 



163 

 

 For an instance, return all values that are related to it via gci:’for_city’ and 

gci:’located_in’ property. Results are stored in a list. 

find_all_time(?Instance,?List) 

 For an instance, return all values that are related to it via gci:’for_time_interval’ and 

pr:’effective’ property. Results are stored in a list. This will be modified to cover the case when 

an area is within a city or vice versa. 

city_consistent_start(?Instance, ?List) 

 Calls finds_all_related/2, finds_all_city/2, city_consistent/2, and city_consistent_sub in 

order. 

city_consistent(?List, City) 

 To be used after find_all_city/2. Evaluate all instances of City from list resulted are the 

same. Detects G1 inconsistency 

city_consistent_sub(?List, City) 

 Evaluate all instances of City from ?List to verify if they are locatedIn City. This 

predicate checks rdf triples rdf(X, gci:located_in, City) and rdf(X, geo:locatedIn, City) where X 

are elements in ?List. Detects inconsistency G2. 

city_consistent_dynamic(?List, City) 

 Evaluate all instances of City from ?List to verify if they are effective in the same year as 

City. This predicate checks rdf triples rdf(X, kp:effective, Year), rdf(City, kp:effective, Year)  

where X are elements in ?List. Detects inconsistency G3. 

time_consistent_start(?Instance, ?List) 

 Calls finds_all_related/2, finds_all_time/2, time_consistent/2. 

time_consistent(?List, Time) 



164 

 

 To be used after find_all_time/2. Evaluate if all instances of Time Intervals (ot:Interval) 

from list resulted are consistent. Temporal consistency of intervals associated to instances related 

to indicator Two intervals are consistent if they are the same instance (rdf_equal/2) or satisfy 

time_interval_equal/2 It is noted if an interval is during another (time_during/2). Detects 

inconsistency T2. 

time_during(?Instance, Time) 

 ?Instance is an instance of ot:Interval. Evaluates if ?Instance is during Time. Checks for 

ot:intervalDuring property or calls ot_interval_during/2. Detects inconsistency T3. Other interval 

relations in T1 and T3 can be added here. 

time_overlap/2, time_meets/2, time_starts/2, and time_end/2 are defined in similar manner. 

time_result_pass(?List, ?Instance) 

 output message. List all instances related to indicator that is associated with temporal 

?instance. Same for time_result_fail/2 and time_result_potential/2. 

time_city_consistent(?Instance, Time, City) 

 combination of time_consistent_start/2 and city_consistent_start/2 so both can be 

checked with a single predicate against an instance. 

unit_consistent_start(?Instance, Unit) 

 Calls finds_all_related/2, finds_all_unit/2, unit_consistent/2. 

find_all_unit(?Instance,?List) 

 return all instances that has a value for property om:unit_of_measure. 

unit_qi_consistent_start(?Instance) 

 Calls find_all_related/2, then finds all instances of om:Quantity. Store the instances to a 

?List then calls unit_ins_consistent/2. 

unit_ins_consistent(?List, Unit) 



165 

 

 ?List is all instances of om:Quantity related to the indicator. Unit is the unit of measure of 

the indicator. Calls units_ins_match/5. Detects M2 inconsistency. 

units_ins_match(?InstanceX, ?Property, ?InstanceY) 

 ?InstanceX and ?InstanceY are related by ?Property. Evaluates if the units of ?InstanceX 

and ?IntanceY are also related by ?Property, or if the singular units of ?InstanceX and 

?InstanceY are related by ?Property. 

units_ins_match(?InstanceX,?Property,?InstanceY,XUnit,YUnit,YSingUnit) 

 same as units_ins_match/3 but also returns the units. 

unit_qm_consistent_start(?Instance) 

unit_qm_consistent(?List) 

 check if the unit of measure for each Quantity and its Measure match. The units must be 

exactly the same so do not need to specify a Unit. Detects inconsistency M1. 

unit_multiple_start(?List, Unit) 

unit_multiple(?List, Unit) 

 Find the singular unit of units linked to elements in ?List, and compare if it is the same 

instance as Unit, or it is linked to Unit via some property P. Detects M3. 

find_all_quantity(?List1, ?List2) 

 find all instance of om:’Quantity’ from listed generated in find_all_related/2. 

find_all_measure(?List1, ?List2) 

 find all instance of om:’Measure’ from listed generated in find_all_related/2. 

find_all_unit_multiple(?List1, ?List2) 

 find all instance of om:’ Unit_multiple_or_submultiple’ from listed generated in 

find_all_related/2. 



166 

 

consistency_cardinality.pl 

owl_prop_cardinality(?Class, ?Property, ?Range, ?Restriction, ?Number) 

 Return the range, restriction and cardinality of a property of a class. PCard is cardinality 

type which is either owl:'qualifiedCardinality', owl:'minQualifiedCardinality', or 

owl:'maxQualifiedCardinality'. The value of cardinality restriction is a literal thus we need to 

convert it to an atom of number with atom_number/1. 

convertNum(?Literal, ?Number) 

 Convert ?Literal to an atom. 

owl_prop_card_exactly(?Instance, ?Property, ?Range, ?Number, Count) 

 Count number of triples with ?Instance and ?Property, that is, rdf(?Instance, ?Property, _) 

with aggregate_all/3. Match this number (Count) with the cardinality restriction (?Number) with 

=:=/2. 

Same for owl_prop_card_min, owl_prop_card_max but check for <=/2 and >=/2 respectively. 

inst_pcard_check(?Instance, ?Property, ?Range, ?Restriction, ?Number ,Count) 

 Based on the type of ?Restriction then call one of the three predicates above. A cut 

operator (!) was implemented at the end to eliminate choice points. 

consistency_transversal.pl 

gci_same_type(?instanceX, ?InstanceY) 

 simply check if X and Y are the same type. 

same_year(?InstanceX, ?InstanceY, ?Year) 

 If X and Y has the same value for ‘for_time_interval’ property. 

card_trans(?InstanceX, ?InstanceY, ?Property ?Number) 



167 

 

 Check if X and Y has the same number of values for ?Property by counting with 

aggregate_all/3.  

trans_subclass(?InstanceX, ?InstanceY) 

 check if X and Y are instances subclasses of each other. In this case they are potentially 

inconsistent. Calls rdf_reachable/3. 

Check_trans_class(?ClassX, ?ClassY) 

 Checks if ?ClassX and ?ClassY are disjoint classes. Then return a list of properties. Then 

call check_trans_all_prop/3. 

check_trans_all_prop (?ClassX, ?ClassY, ?PList) 

 Return range restriction of ?ClassX and ?ClassY as NXList and NYList for each property 

in ?PList. Then calls check_trans_all_value/5 to evaluate range restrictions of ?ClassX and 

?ClassY. 

check_trans_all_value (?ClassX, ?ClassY, ?Property, ?NXList, ?NYList) 

 Calls check_def_class/2 on elements of ?NXList and ?NYList, calls check_trans_class/2 

if fails. Classes are inconsistent if both check_def_class/2 and check_trans_class/2 fails. 

check_trans_list_start(?InstanceX, ?InstanceY) 

 Calls same_year/2 to check if both instances have the same time interval. Then evaluate 

?InstanceX and ?InstanceY by calling (check_def_class/2 ; check_trans_class/2). Then calls 

generate_list/3. 

check_trans_list(?List) 

 similar to check_def_list/1 but ?List is a nested list. Each element in ?List is a pair of 

instance in the form [X,Y]. e.g. [[X1,Y1,],[X2,Y2],…]. Calls (check_def_class/2 ; 

check_trans_class/2) for each pair of [X,Y] generate new list and append to the tail of ?List. 

class_prop_trans(?ClassX, ?ClassY, ?Class, ?List) 



168 

 

 return a list of properties from both classes. 

class_individual_prop_trans(?InstanceX, ?InstanceY, ?Class, ?List) 

 return a list of properties of a class that an individual has value of.  

rdf_out_trans_list(?InstanceX, ?InstanceY, ?PList, ?XList, ?YList) 

 For each property in ?PList, return all values of X and Y and store them into XList and 

YList respectively. card_trans is called within this function. 

rdf_out_list_n(?InstanceX, ?InstanceY, ?PList, ?NList) 

 calls class_individual_value/3 on each property in ?PList on ?InstanceX and ?InstanceY 

to return two lists XList and YList which are list of range restrictions of X and Y respectively. 

Calls card_trans/4 to check cardinality of property for both ?InstanceX and ?InstanceY. Calls 

combine_list_groupby/3 and flatten/3 to generate ?NList. 

combine_list_groupby(?List1,?List2,?FinalList) 

 combine ?List1 and ?List2 into a nested list ?FinalList. Each element is in the form [X,Y] 

and is grouped by the class. E.g. X has values C1 and C2 for property p while Y has C3 and C1 

as values of p. The list returned will be [[C1, C1], [C2, C3]]. Incorrect comparison such as [C1, 

C3], [C2, C1] shall be avoided. Calls same_type_list/3 and diff_type_list/3. 

same_type_list(?List1, ?List2, ?FinalList) 

 used in combine_list_groupby/3. Return a list of values with each pair being instances of 

the same class 

diff_type_list (?List1, ?List2, ?SameList, ?FinalList) 

 complement of same_type_list/3. ?SameList is returned from same_type_list/3. Generate 

a list of all remaining elements. 

generate_list(?InstanceX, ?InstanceY, ?List) 



169 

 

 Generate a list for check_trans_list/1. All values of X and Y are stored in pairs of [X,Y] 

that are grouped by their types. Calls class_individual_prop_trans/4, rdf_out_trans_list/5, 

combine_list_groupby/3 in order. 

Consistency_trans_support.pl 

find_all_time_trans(?List, ?TimeList) 

 To be called after find_all_related_start/2. Returns a list of instances of ot:Interval in a 

list related to the head of ?List. 

generate_time_trans_list(?InstanceX, ?InstanceY, ?List) 

 Generate list of instances of ot:Intervals of ?InstanceX and ?InstanceY and combine into 

a single nested list ?List via the predicate ?combine_list_groupby/3. ?List is in the form of 

[[X1,Y1],[X2,Y2]…]. Calls, find_all_related_start/2 find_all_time_trans/2, and 

combine_list_groupby/3. 

trans_time_consistent(?List) 

 ?List is in the form of [[Xt,Yt]|T]. Xt and Yt are instances of Interval. Checks if Xt and 

Yt are temporal consistent. First check if they are interval consistent, return true if true. If false, 

then check if one interval is during another. Calls time_interval_equal/2, if true then return true, 

if false then calls time_during_trans/2. 

time_interval_equal(?InstanceX, ?InstanceY) 

 Checks if time intervals are equal by evaluating the beginning and end (instants) of the 

intervals. The instants will be evaluated upon temporal unit and datetime parameters (values of 

year, month, etc.). Calls ot_instant_equal/2 and ot_inst_unit_equal/2 

ot_instant_equal(?InstanceX, ?InstanceY) 

 Modified based on Mark’s OT-axiom file where instants are compared based on temporal 

units. Compares data values of intervals based on datatype properties such as ot:year, ot:month, 

etc. 



170 

 

ot_inst_unit_equal(?InstanceX, ?InstanceY) 

 Evaluates if the temporal units of the intervals ?InstanceX and ?InstanceY are the same. 

time_during_trans(?instanceX, ?InstanceY) 

 Checks if time interval X is during Y or vice versa. calls time_during/2 

ot_inst_unit (?instance, Unit) 

 return the temporal unit of an instant 

time_interval_unit(?instance, Unit) 

 return the temporal unit of an interval 

generate_city_trans_list(?InstanceX, ?InstanceY, ?List) 

 generate city instances related to X and Y in a paired list in the form of 

[[X1,Y1],[X2,Y2]…]. Calls find_all_city_trans/2 and combine_list_groupby/3. 

find_all_city_trans(?List, CityList) 

 Return a list with instances that is related to a City via for_city and located_in property 

trans_feature_code(?instanceX, ?InstanceY) 

 Evaluates if the feature codes of instances are the same. Feature codes are instances of 

geonames. Two placenames are consistent in terms of admin division if both province or state, 

and country have the same feature code. 

trans_nearby(?instanceX, ?InstanceY) 

 Checks if instance X is a nearby feature of Y. Evaluates the property geo:nearbyFeature 

trans_dynamic(?instanceX, ?InstanceY) 

 Checks if the effective time interval is the same or time interval consist between the 

instances.  



171 

 

find_all_unit_trans(?List, UnitList) 

 Extract values of om:unit_of_measure of all elements in the ?List and store in UnitList. 

Generate_unit_trans_list (?InstanceX, ?InstanceY, ?List). Generate unit of measure instances 

related to X and Y in a paired list. Calls find_all_unit_trans/2 

unit_multiple_trans(?List) 

 ?List is in the form of [[X,Y],[X2,Y2]…]checks if unit of X is a multiple or submultiple 

of units of Y and vice versa 

unit_consistent_trans(?InstanceX, ?InstanceY) 

 Check the unit of X and Y. If it’s the same instance (rdf_equal/2) then return true. If not, 

check if the unit of X and Y are related via property P. 

Consistency_longitudinal.pl 

check_time_city(?InstanceX, ?InstanceY) 

check_time_city(?InstanceX, ?InstanceY, City, YearX, YearY) 

 check time and city. Two instances should have same value for City while different value 

for Year 

check_long_list_start(?InstanceX, ?InstanceY) 

 Call check_time_city/2 first. Then generate a list and call check_long_list/1 

check_long_list(?List) 

 same as check_trans_list/1 with different output message. 

long_dur(?InstanceX,?InstanceY) 

Both ?InstanceX and ?InstanceY are instances of ot:Interval. Evaluate if their duration (Dur), 

which is an instance of ot:DurationDescription, are equal. 

 



172 

 

Example.pl 

Example assertions. We use four sets of instances of 15.2 indicator to test the CICC during 

development phase. 

[15.2_trt_2013, 15.2_trt_2015, 15.2_nyc_2013, 15.2_nyc_2015] 

Each instance on its own can be used for definitional consistency evaluation. 

The pairs (15.2_trt_2013, 15.2_nyc_2013) and (15.2_trt_2015, 15.2_nyc_2015) can be used for 

transversal consistency evaluation. 

The pairs (15.2_trt_2013, 15.2_trt_2015) and (15.2_nyc_2013, 15.2_nyc_2015) can be used for 

longitudinal consistency evaluation. 

testCase.pl 

An error generator that generates the following errors. 

 Replace the object of a triple (Sub, Prop, Obj) with a random instance. 

 An alternate to this type of error is to change a triple but only with objects from the same 

class of the original value 

 Add or remove an assertion for a subject’s property. 

Automated test can be done with loop_test/1 as stated in the beginning. Errors can be introduced 

with manual_test/0. 

change_instance(?Instance, ?Property, ?Old, ?New) 

 change the object of a triple from ?Old to ?New by calling rdf_retractall/3 and 

rdf_assert/3. 

add_property(?Instance1, ?Instance2) 

 assert a triple (?Instance1, Prop, ?Instance2) where Prop is a property of ?Instance1 

generated randomly. ?Instance2 is a randomized instance. 

change_property(?Instance1, ?Instance2) 



173 

 

 Add or remove a triple wrt a property by calling add_property/2 or rdf_retractall/3 

randomly. 

remove_property(?instance, ?Property) 

 remove all values of ?Property from ?instance by calling rdf_retractall/3. 

error_generate(?instance1, ?Instance2) 

 Call change_instance/4 upon a random instance. ?Instance2 is a randomized instance. 

error_same_type(?instance1, ?Instance2) 

 Call change_instance/4 upon a random instance. ?Instance2 is a randomized instance that 

has the same class as the original object. 

class_individual_prop_test(?Instance, ?Class, ?List) 

 same as class_individual_prop/3. 

random_prop_test(?Instance, ?Property) 

 Randomize a property from ?Instance generated by class_individual_prop_test/3. 

class_pcard_prop_test(?Instance, ?Class, ?List) 

 same as class_pcard_prop /3. 

random_prop_card_test(?Instance, ?Property, ?Class) 

 Randomize a property from ?Instance generated by class_pcard_prop_test /3. 

Auto_error() 

 Return an instance from the KB randomly. Then randomly runs the following predicates: 

error_generate/2, error_same_type/2, change_property/2. Then repeat. 

Manual_error() 



174 

 

 A predicate for debugging purpose. It’s auto_error/0 without repeat. 

create_filename(?Integer, ?String) 

 generate filenames based on number of runs. E.g. 100 test runs will generate files named 

as output1.txt, output2.txt….output100.txt 

loop_test(?Integer) 

Run error generator and CICC for ?Integer times. All outputs are stored in text file. 

 Generate filename based on ?Integer.  

 Check definitional consistency for all instance, i.e., 

['15.2_trt_2013','15.2_nyc_2013','15.2_trt_2015','15.2_nyc_2015'] 

 Add 1 to ?Integer. 

 Reset the prolog database. Then reload regPrefix.pl 

 Recursively run with ?Interger +=1. 



 

175 

Appendix III – Prolog Implementation 

TC1. Class Type Inconsistency 

%check if a class C is consistent with definition class Def 

check_def_class(C,Def):-

 rdfs_individual_of(C,Def);rdf_equal(C,Def);rdfs_subclass_of(C,Def). 

TC2. Instance Type Inconsistency 

%check if instance X is consistent with class Def 

check_def (X,Def):-  

 %dif/2 predicate omits the type owl:NamedIndividual so only classes will be considered 

 rdf(X,rdf:'type',Type), dif(Type,'http://www.w3.org/2002/07/owl#NamedIndividual'), 

 %check if classes are equal, evaluate properties if not 

 (check_def_class(Type,Def)->lprint(['Class and Definition are equal classes 

']);check_def_class_prop(Type,Def)). 

TC3. Property Inconsistency 

%Type is the class of instance X 

rdf(X,rdf:'type',Type), 

 

%evaluate properties and restrictions between Type and Def 

check_def_class_prop(Type, Def):- 

 %return a list of properties PList from Def. Where Def is the corresponding definition 

class 

 class_prop(Def,PList), 

 %Evaluate the values of all properties in PList 

 check_all_prop(Type,Def,PList). 

check_all_prop(Type,Def,[Prop|T]):- 

 %return value restriction Val of Def for property Prop 

 owl_triples(Def,Prop,Val), 

 %return all values of Prop as list NList.  

 class_range(Type,Prop,NList), 

 %Evaluate the values in NList with respect to Val  



176 

 

 check_all_value(Type,Prop,Val,NList) ->(tprint([]),tprint([‘Property ’, Prop, ‘is 

consistent’])); 

 lprint(['Class is T3.PROPERTY INCONSISTENT with Definition']), 

 lprint([' - Property restrictions do not satisfy with the definition']), 

 !,fail)), 

 %call itself recursively until all properties in PList are checked for Type and Def. 

 check_all_prop(Type,Def,T),!. 

%Base case 

check_all_prop(Type,Def,[]). 

check_all_value(Type,Prop,Val,[XNext|T]):- 

 %return XNext which is the value restriction of Type for Prop  

 owl_triples(Type,Prop,XNext), 

 %evaluate classes XNext with respect Val 

 %evaluate properties if not equal 

 %fail if XNext and Val are type inconsistent 

 (check_def_class(XNext,Val)->(lprint([]),lprint(['Class and Definition are equal classes 

'])); 

  (tprint([]),tprint(['Class and Definition are NOT equal, Comparing properties ']), 

  (check_def_class_prop(XNext,Val)->( tprint([XNext, ' is type consistent with ',Val])); 

 lprint(['Class is T1.TYPE INCONSISTENT with Definition']), !,fail))) 

 ), 

 %call itself recursively until all values of Prop for Type has been checked. 

 check_all_value(Type,Prop,Val,T). 

%base case 

check_all_value(Type,Prop,Val,[]). 

 

T1. Non-Overlap Interval Inconsistency 

%[Xt|T] is a list where all elements are instances temporal entities 

%AllList is a list of all instances in the indicator data 

time_consistent_noverlap([Xt|T],AllList,Time):-  

 findall(X,(member(X,AllList),rdf(X,Prop,Xt)),XList),(( 



177 

 

 (rdf(Xt,ot:'before',Time);ot_interval_before(Xt,Time)); 

 (rdf(Xt,ot:'after',Time);ot_interval_after(Xt,Time)))-> 

  time_result_fail(XList,Xt);lprint(['Intervals are T1 consistent '])), 

 time_consistent_noverlap(T,AllList,Time).%base case 

time_consistent_noverlap ([],AllList,Time). 

T2. Interval Equality Inconsistency 

%Evaluates temporal consistency of intervals associated to instances related to indicator 

%Two intervals are consistent if they are the same instance or satisfy time_interval_equal 

%It is noted if an interval is a subinterval or using different temporal units 

time_consistent([Xt|T],AllList,Time):-  

 findall(X,(member(X,AllList),rdf(X,Prop,Xt)),XList),((rdf_equal(Xt,Time);time_interval

_equal(Xt,Time))-> 

  time_result_pass(XList,Xt); 

  ((time_subinterval(Xt,Time);time_unit_match(Xt,Time)) -

>time_result_potential(XList,Xt));time_result_fail(XList,Xt)), 

 time_consistent(T,AllList,Time). 

%base case 

time_consistent([],AllList,Time). 

T3. Subinterval Inconsistency 

time_subinterval(Xt,Time):-

(time_during(Xt,Time);time_overlap(Xt,Time);time_meets(Xt,Time);time_starts(Xt,Time);time_

ends(Xt,Time)). 

time_during(Xt,Time):- rdf(Xt,ot:intervalDuring,Time);ot_interval_during(Xt,Time). 

time_overlap(Xt,Time):-rdf(Xt,ot:intervalOverlap,Time). 

time_meets(Xt,Time):- rdf(Xt,ot:intervalMeets,Time). 

time_starts(Xt,Time):- rdf(Xt,ot:intervalStarts,Time). 

time_ends(Xt,Time):- rdf(Xt,ot:intervalEnds,Time). 

T4. Temporal Granularity Inconsistency 

%retreive temporal unit of interval X. fails if unit is not equal within X 

time_unit(Xt,Unit):- rdf(X, ot:hasEnd, Xend), rdf(X, ot:hasBeginning, Xbeg), 



178 

 

 rdf(Xbeg, ot:inDateTime, Xbegdt), rdf(Xend, ot:inDateTime, Xenddt), 

 rdf(Xbegdt, ot:unitType, Unit), rdf(Xenddt, ot:unitType, Unit). 

time_unit_match(Xt,Time):- time_unit(Time,Unit),time_unit(Xt,Unit). 

G1. Place Equality Inconsistency 

%Given a list, check all instances in the list has the same value as City 

%elements of list are instances of values of for_city or located_in 

city_consistent([X|T],City):-  

 ((rdf(X,gci:'for_city',City);rdf(X,gci:'located_in',City))-> 

  lprint([]),lprint([X, '  is consistent with the indicator']);lprint([]),lprint([X, ' is G1 

INCONSISTENT with indicator '])),  

 city_consistent(T,City). 

%base case 

city_consistent([],City). 

G2. SubPlace Inconsistency 

%Given a list, check all instances are located in the City 

city_consistent_sub([X|T],City):-  

 (rdf(X,gci:'located_in',PartCity), rdf(PartCity,geo:'locatedIn',City)-> 

  lprint([]),lprint([X, '  located in area : ',PartCity,' which is within city ', 

City]);lprint([]),lprint([X, ' does not refer to a subplace of ', City])),  

 city_consistent_sub(T,City). 

%base case 

city_consistent_sub([],City). 

G3. Dynamic Place inconsistency 

See implementation of G4. 

G4. Dynamic Place Temporal Inconsistency 

%Given a list, check all instances are dynamically City 

%instead of just checking if Year are the same instance. Also need to check if two intervals are 

consistent with time_interval_equal 

city_consistent_dynamic([X|T],City):-  



179 

 

 lprint(['G3: Dyanmic Place Inconsistency ']), 

  (rdf(X,kp:'effective',Year), rdf(City,kp:'effective',Year)-> 

  lprint([]),lprint([X, ' and ', City, ' are effective in Year : ',Year]);lprint([]),lprint([' 

City effective year not equal '])), 

 city_consistent_dynamic(T,City). 

  

%base case 

city_consistent_dynamic([],City). 

M1. Quantity Measure Inconsistency 

%check unit consistency between a Quantity and its Measure 

unit_qm_consistent([X|T]):- 

 rdf(X,om:'value',Measure),rdfs_individual_of(Measure,om:'Measure'), 

 rdf(X,om:'unit_of_measure',Unit1),rdf(Measure,om:'unit_of_measure',Unit2), 

 ((rdf_equal(Unit1,Unit2))-> 

  lprint([]),lprint([X, ' and ', Measure, ' Units Match']);lprint([]),lprint([X, ' and ', 

Measure, ' Units DONT Match '])), 

 unit_qm_consistent(T). 

 

%base case 

unit_qm_consistent([]). 

M2. Indicator Unit Component Inconsistency 

%the list is generated with all instances of om:Quantity related to the indicator 

unit_ins_consistent([H|T],Ind):-  

(units_ins_match(Ind,P,H,XUnit,YUnit,YSingUnit)-> 

lprint([]),lprint([H, ' has Unit : ',YUnit,' or singular unit', YSingUnit,' indicator has ',XUnit, ' they 

are connected with property ',P]);lprint([]),lprint([H, ' Unit instance not equal 

'])),unit_ins_consistent(T,Ind). 

%base case 

unit_ins_consistent([],Ind). 

 



180 

 

M3. Singular Unit Inconsistency 

%find the sigular unit of X and compare with Unit 

%the list is generated with instances of om:Unit_multiple_or_submultiple 

unit_multiple([X|T],Unit):-  

 rdf(X,om:'unit_of_measure',ThisUnit),owl_triples(ThisUnit,om:'singular_unit',SingUnit),

lprint([]),lprint([X, 'has singular Unit ',SingUnit]), 

 ((rdf_equal(SingUnit,Unit),lprint([]),lprint(['Singular unit is same as 

indicator']));(rdf(Unit,P,SingUnit), 

  lprint([]),lprint([X, ' has singular Unit : ',SingUnit,' indicator has ',Unit, ' they are 

connected with property ',P])))->lprint([]),lprint(['Unit consistent']);lprint([]),lprint([X, ' Unit 

instance not equal ']),  

 unit_multiple(T,Unit). 

 

%base case 

unit_multiple([],Unit). 

Trans_TC. Transversal Type Inconsistency 

check_trans_class(TypeX,TypeY):- 

 %class_individual_prop/2 returns properties of class Type as a list PList 

 owl_disjoint_class(TypeX,TypeY)->(tprint([]),tprint([TypeX, ' and ', TypeY, ' are disjoint 

so fail']),fail);( 

 (leaf_node(TypeX);leaf_node(TypeY))->fail; 

 class_prop_trans(TypeX,TypeY,PList), 

 %check_def_all_prop/3 checks if instance X matches range restriction of Type for each 

property in PList 

 (check_trans_all_prop(TypeX,TypeY,PList)->(tprint([]),tprint([TypeX, ' all properties 

are good with ',TypeY])); 

 (lprint([]), 

 lprint(['Classes are Transversal TYPE INCONSISTENT (Trans_TC) ']), 

 lprint([' Class 1: ',TypeX]), 

 lprint([' Class 2: ',TypeY]),!,fail)) 

 ). 



181 

 

 

check_trans_all_prop(TypeX,TypeY,[Prop|T]):- 

 %owl_triplets can get all properties from both the class and parent classes 

 owl_triples(TypeX,Prop,ValX), 

 owl_triples(TypeY,Prop,ValY), 

 %return all values of a certain property as list NList.  

 class_range(TypeX,Prop,NXList), 

 class_range(TypeY,Prop,NYList), 

 %Check if the value matches the class restriction from the definition 

 (check_trans_all_value(TypeX,TypeY,Prop,NXList,NYList)->(tprint([]),tprint([NXList, '  

Values are good with ',NYList]));(tprint([]),tprint([NXList, ' one of these Values is TYPE 

INCONSISTENT with ',NYList]),!,fail)), 

 check_trans_all_prop(TypeX,TypeY,T),!. 

%base case 

check_trans_all_prop(TypeX,TypeY,[]). 

 

check_trans_all_value(TypeX,TypeY,Prop,[XNext|TX],[YNext|TY]):- 

 owl_triples(TypeX,Prop,XNext), 

 owl_triples(TypeY,Prop,YNext), 

 %check_def_class(XNext,Val), 

 (check_def_class(XNext,YNext)->(tprint([]),tprint([XNext, ' and ',YNext, ' is SAME ']));  

  (check_trans_class(XNext,YNext)->(lprint([]),lprint([XNext, ' is Transversally 

type consistent with ',YNext])); 

  (lprint([]), 

  lprint(['Classes are Transversally TYPE INCONSISTENT (Trans_TC) ']), 

  lprint([' Class 1:', XNext]), 

  lprint([' Class 2:', YNext]),!,fail))) 

 ), 

 tprint([]),tprint(['Step 4: Class ', XNext, ' individual of ', YNext]), 

 check_trans_all_value(TypeX,TypeY,Prop,TX,TY). 

%base case 

check_trans_all_value(TypeX,TypeY,Prop,TX,[]). 



182 

 

check_trans_all_value(TypeX,TypeY,Prop,[],TY). 

Trans_G1. Feature Code Inconsistency 

%-----Trans_G1 Feature Code Inconsistency------- 

%evaluates if feature codes are the same between two indicators 

city_g1(X,Y,CityX,CityY):-rdf(X,gci:'for_city',CityX),rdf(Y,gci:'for_city',CityY), 

 rdf(CityX,'http://www.geonames.org/ontology#featureCode',Code), 

 rdf(CityY,'http://www.geonames.org/ontology#featureCode',Code). 

city_g1(X,Y,CityX,CityY,CodeX,CodeY):-

rdf(X,gci:'for_city',CityX),rdf(Y,gci:'for_city',CityY), 

 rdf(CityX,'http://www.geonames.org/ontology#featureCode',CodeX), 

 rdf(CityY,'http://www.geonames.org/ontology#featureCode',CodeY). 

city_g1(X,Y):-city_g1(X,Y,_CityX,_CityY,CodeX,CodeY),rdf_equal(CodeX,CodeY). 

%check if parent features are of the same feature code 

city_g1_parent(X,Y,CityX,CityY):-rdf(X,gci:'for_city',CityX),rdf(Y,gci:'for_city',CityY), 

 (rdf(CityX,'http://www.geonames.org/ontology#parentFeature',ParentX); 

 rdf(CityX,'http://www.geonames.org/ontology#parentCountry',ParentX); 

 rdf(CityX,'http://www.geonames.org/ontology#parentADM1',ParentX)), 

 (rdf(CityY,'http://www.geonames.org/ontology#parentFeature',ParentY); 

 rdf(CityY,'http://www.geonames.org/ontology#parentCountry',ParentY); 

 rdf(CityY,'http://www.geonames.org/ontology#parentADM1',ParentY)), 

 rdf(ParentX,'http://www.geonames.org/ontology#featureCode',Code), 

 rdf(ParentY,'http://www.geonames.org/ontology#featureCode',Code). 

city_g1_parent(X,Y):-city_g1_parent(X,Y,_CityX,_CityY). 

Long_TC. Longitudinal Type Inconsistency 

Same implementation as Trans_TC 

Long_T1. Duration Inconsistency 

%check time and city. Two instances should have same value for City while different value for 

Year.  

%Also checks duration of the years 

check_time_city(X,Y, City, YearX, YearY):-  



183 

 

 rdf(X, gci:'for_city', City), rdf(Y, gci:'for_city', City),  

 rdf(X, gci:'for_time_interval', YearX), rdf(Y, gci:'for_time_interval', YearY),  

 YearX \= YearY,long_dur(YearX,YearY). 

%check if two intervals have the same instance of ot:DurationDescription 

long_dur(Time1,Time2):-

rdf(Time1,ot:hasDurationDescription,Dur),rdf(Time2,ot:hasDurationDescription,Dur). 

 

 

 


