
Knowledge Based Simulation:
An Artificial Intelligence Approach to System

Modeling and Automating the Simulation Life Cycle

Mark S. Fox, Nizwer Husain, Malcolm McRoberts and Y.V.Reddy

CM U-R I-TR-88-5

Intelligent Systems Laboratory
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania

13 April 1988

Copyright 0 1988 Carnegie Mellon University

This research was supported, in part, by Digital Equipment Corporation, Westinghouse Electric
Corporation, and the CMU Robotics Institute.

i

Table of Contents
1. introduction
2. Corporate Distribution Domain
3. Model Building

3.1. Model Representation
3.2. Model Acquisition
3.3. Consistency and Completeness
3.4. Model Reduction

3.4.1. Static Abstraction
3.42. Dynamk Abstraction

4.1 .l. Goal Representatlon
4.1.2. instruments
4.1.3. An Example of Scenario Rating

4.2. Experiment Specification
4.3. Simulation Execution

4.3.1. Checkpoints and interrupts
4.3.2. Tracing
4.3.3. Stepping
4.3.4. Event Tracking
4.3.5. Simulation Animation
4.3.6. Report generation

4.4. Experiment Rating
5. Automatic Analysis of Data

5.1. Learning Rules Using Path Analysis
5.2. A Detailed Example

6. Automatlng the Simulation Life Cycle
7. Conclusions
8. Acknowledgements

4. Model Simulation
4.1. Goal Specificatlon and Instrumentation

2
3
5
5
7
7
8
9

10
10
11
11
12
14
16
18
19
19
20
20
21
22
24
26
27
28
34
37
38

ii

Figure 2-1 :
Figure 3-1 :
Figure 3-2:
Figure 3-3:
Figure 3-5:
Figure 3-4:
Figure 4-1 :
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

List of Figures
Exampie of a Simplified CDS Model
Example of a Reseller schema
The Knowledge Craft Representation Building Interface
Process pian and facility layout interface
Example of Equivalent Node Aggregation
Equivalent Node Aggregation
Composite Goal Schema
Constraint Schema
Constraint Schema
KBS-Instrument Schema
Inventory Instrument Schema
Inventory Data schema
An example of CDS’s goal
Retailer Satisfaction Goal Constraint
Distribution Cost Reduction Goal Constraint

Figure 4-1 0: Specs for Customer Satisfaction Constraint
Figure 4-1 1 : Specs for Distribution Goal Constraint
Figure 4-1 2: Instrument to measure Stockouts
Figure 4-13: Instrument to measure Total Orders
Figure 4-1 4: Instrument to measure Distribution Costs
Figure 4-1 5: Instrument to measure Manufacturing Costs
Figure 4-1 6: The Run specification
Figure 4-17: Expert System Run spec
Figure 4-1 8: Specification of an Experiment
Figure 4-1 9: An example Event Notice
Figure 4-20: Tracing with Graphics in actual runs
Figure 4-21 : Event Tracks
Figure 4-22: Animation of the inet-pc model
Figure 4-23: Example of Business Graphics
Figure 4-24: Reports using windowed Displays
Figure 4-25: Example of Goal Evaluation
Figure 4-26: Complex Goals viewed Graphically
Figure 5-1 : Simulation Craft Analysis and Treatment
Figure 5-2: Causal Hypotheses in inet-pc model
Figure 5-3: Causal Chain derived from Event Tracking
Figure 5-4: Validating hypotheses
Figure 5-5: Results of Experiments on inet-pc model
Figure 5-6: An Example Causal Hypothesis
Figure 5-7: An Example Causal node
Figure 5-8: An Example Causal Path
Figure 5-9: The Model variable schema
Figure 5-1 0: Analyzing Hypotheses
Figure 6-1 : Architecture of a KBS based Expert System
Figure 6-2: Recommendation from Automatic Analysis
Figure 6-3: Simulation Run Profile

5
6
8
9
9

10
12
12
12
13
13
14
14
14
14
15
15
15
15
15
16
17
17
18
18
20
21
22
23
24
25
26
27
29
29
30
31
31
32
32
32
33
35
36
37

1

Abstract

Abstract: This paper summarizes the past eight years of research in the application of Artificial
Intelligence to Simulation. Our focus has been in two areas: the use of AI knowledge representation
techniques for the modeling of complex systems, and the codification of simulation expertise so that it can
be used to manage the simulation life cycle. The KBS system is an embodiment of this research. It
provides a complete Simulation Decision Support Environment for the modeling, validation, simulation
and analysis of complex systems. KBS has been applied to a variety of problems including factory and
distribution system analysis.

2

1. Introduction
Industry has been slow in adopting simulation as a means for analyzing complex decision problems.

One reason is that the complexity of the modeling language, and differences between simulation
modeling concepts and the system to be modeled make model building a difficult and time consuming
task. Early work in Knowledge Based Simulation [Klahr & Fought 80, McArthur & Sowizral 81, Reddy &
Fox 82a, Reddy et al. 861 has attempted to remove this problem by using Artificial Intelligence (AI)
knowledge representation techniques, such as frames, to represent the objects and their relationships,
and rules, to represent the procedural behaviors of the objects', to create simulation models which are:

0 explicit,
understandable,
modiiiable, and
self-explanatory.

By using a frame language to represent domain concepts, such as object structure, and goals, there is a
one to one correspondence between the domain and the simulation model2. Secondly, by using rules to
represent object behavior, the specification and modification of the behaviors become easier. Lastly,
explanation techniques developed around rule based systems .provide the basis for explaining event
behaviors.

While the AI approach has reduced the difficulty of model building, somewhat, more widespread use of
simulation technology will not be achieved until the time it takes to perform the activities in the simulation
life cycle:

0 Problem formulation
0 Modeling building
0 Data acquisition
0 Model translation
0 Verification
0 Validation
0 Experiment planning
0 Experimentation, and
0 Analysis of results

is reduced, while at the same time the quality of the results are enhanced. The barrier to achieving these
goals is the lack of available expertise both in simulation theories and techniques and the domain of
application. This lack of expertise results in:

inaccurate and incomplete models
poor experiment designs

0 poor analysis
0 few ideas of how to alter the model to maximize the simulation goals

The representation and utilization of expertise has been one of the more important contributions of AI.
Consequently, AI knowledge engineering tools, such as Knowledge CraftR [Knowledge Craft 851, provide
an excellent environment for constructing a Knowledge Based Simulation Tool for supporting and
managing the simulation life cycle and applying expertise at each stage of the cycle.

'Confusion exists around the use of a knowledge engineering tod to perform simulation and the we of knowledge representation.
In the former, the powerful graphic fadtities provided by the tool and the underlying workstation provide a rich and powerful interface
which does not necessarily have any AI content.

%ere is another confusion between the concepts of objects such as in SimuWObject Oriented Programming and knowledge
representation. Knowledge representation, in addition to being able to represent objects and their procedural behavior [Rychener
82, Knowledge Crafl 851, focuses on the relations among objects and the deductions supported by them [fox79]. Even more so,
knowledge representation research is directed towards the developement of a clear, concise and consistent semantics for the
representation of knowledge. Consequently, standard representations have been developed for a number of domains such as
factory scheduling [foxSS] and project management [sathiM].

3

In this chapter, we describe the knowledge based simulation system KBS. KBS has been a testbed for
exploring the concept of AI in Simulation. Since 1980, we have been exploring issues such as:

0 Using an object oriented approach to model representation where objects have a one to one
correspondence with domain objects, and the objects have methods which define their
behavior. This provides flexibility in creating and altering entities and their behavior, without
altering the simulation model interpreter [Fox & Reddy 821.

Extending the object oriented representation with concepts from semantic networks in order
to provide a standard semantics for representing entities and their relationships [sathi85].

Representing an object‘s behavior (Le., events) in the form of rules which are easily
understood by the user [Rychener 821.

Combining menus and graphics to provide interactive model building.

Verifying models by using logic programming to specifying verification axioms.
Providing the capability to reduce a model’s complexity through the use of abstraction
mechanisms so that a model can be represented at multiple levels of abstraction. The user
specifies the level of simulation and the system automatically configures the model
[McRoberts, Fox & Husain 85).

Focusing the gathering and analysis of simulation data according to goals specified by the
user [Reddy, Fox & Husain 85, Venkataseshan & Reddy 841.

0 Enhancing the user’s understanding of a model’s dynamic behavior by providing a variety of
simulation monitoring facilities including: stepping, tracing, the display of inter-event and
intra-event communications, and intermpts and checkpoints to suspend a simulation run to
investigate entities or take checkpoints so as to explore the effect of alternate decisions while
preserving the option of restoring the system to any one of the several checkpointed model
states.

Rating sirnulation results according to the goals provided by the user.

Heuristic (i.e., rule-based) analysis of simulation data and the specification of repairs to the
model in order to better satisfy the predefined goals.

Automatic rule refinement using causal path analysis to determine the degree to which
variation of a given effect is determined by each particular cause in the model, achieved by
combining the qualitative knowledge regarding causal relations with the quantitative
knowledge furnished by correlation and regression.

Managing the simulation life cycle by means of a goal directed rule system which examines
the performance of a scenario with the help of diagnosidrepair rules which can suggest
model modifications that may realize a simulation goal, thereby transforming simulations from
being descriptive systems to prescriptive systems.

Section 2 describes the distribution domain which will be used as the primary example throughout the
article. Section 3 describes the KBS methodologies for representing, creating and verifying models.
Section 4 describes goal acquisition, model instrumentation, simulation execution and data gathering.
Section 5 describes how KBS learns rule refinements from simulation data. Section 6 describes the
overall goal directed architecture of KBS. Lastly, we conclude in section 7.

2. Corporate Distribution Domain
In a large manufacturing organization the corporate distribution system plays an important role in

assuring adequate market penetration and retention for its products. This is accomplished by keeping
transportation and warehousing costs low,and facilitating an aggressive pricing policy. In addition, it
should provide a good level of service to its customers and resellers by providing products on time while
not requiring a high level of customer inventory. In order to achieve this the corporate distribution system

4

should simultaneously deal with a number of mutually conflicting policies. For example, if a reseller is
required to carry a high inventory level to minimize stockouts it will reduce the cost of transportation but
will exact a penalty on the reseller’s ability to be competitive which may result in loss of market share for
the corporation. In order to deal with issues such as this a corporate distribution system needs a tool to
aid in decision making. Even though many analytical techniques for dealing with multi-echelon inventory
systems do exist, we chose a simulation approach so that we can effectively incorporate many
idiosyncratic policies that are normally part of complex distribution management systems. The following
provides a more detailed description of the distribution system.

A manufacturer produces a number of products which consist of a large number of components and
subassemblies some of which are produced by the manufacturer at widely distributed locations while
others are purchased from vendors located worldwide. These components and subassemblies are
transported to a number of distribution centers where they are stocked. Each distribution center serves
customers located in its assigned area. The customer may be a reseller or special customer who can
deal with the distribution center or the corporate business unitdirectly. Customer requests are processed
by the business unit or the distribution center which results in shipment of products or components to be
merged at the customer site. The distribution centers in turn depend on manufacturing centers and
vendors to supply components and products to replenish their stock. This problem is further complicated
by factors such as seasonal demands, varying lead times to build or expand manufacturing facilities, need
to maintain uniform production levels, contractual agreements with vendors, effects of weather and labor
problems on transportation schedules and myriad other problems. It can be easily seen that the corporate
distribution problem puts tremendous demands on managers at all levels who are faced with decision
making which has far reaching effects on the entire corporation.

Consider some of the decisions faced by managers at various levels in the Corporate Distribution
System (CDS). The primary objectives of simulating a CDS is to be able answer questions similar to
those listed below.

0 Where should we locate manufacturing plants for various components and what should their

For a given forecasted demand and its geographic distribution where should we locate

Should the products be merged at distribution centers or at customer sites?

What is the effect of transportation modes and schedules on customer stockouts and

What is the overall effect of a delay in vendor shipment of some key components?

Do we have enough manufacturing and distribution capacity to meet an anticipated increase

What is the effect of consolidation of manufacturing and distribution facilities?

What is the effect of a proposed order handling procedure on the corporation?

capacities be?

distribution centers and what should their capacities be?

satisfaction?

in demand for products?

This list illustrates the enormous complexity of the distribution domain and suggests the need for tools
to aid in decision making at a number of levels. For example, low inventories can economize inventory
carrying costs but lost sales resulting from frequent stockouts can reduce total profits. Because of this, the
tool must inherently be able to deal with conflicting goals. The KBS approach to simulation will make it
possible to deal with such issues.

A simplified model of a Corporate Distribution network is shown in Figure 2-1. (See [Reddy et al. 83) for
the earlier work upon which this model is derived.)

5

M1 M2

Manufacturers

R2 R3 R4 R1

Rese 1 le r s

i n d i c a t e s flow of mater ia l

-------------- i n d i c a t e s flow of information

Figure 2-1 : Example of a Simplified CDS Model

3. Model Building
The acquisition, representation and verification of simulation models probably consumes the majority of

the time spent in the simulation life cycle. The following describes how we have applied AI to increase the
quality of models and decrease the time it takes to build them.

3.1. Model Representation
It is our belief that the greater the cognitive distance between an expert‘s description of a system and

the descriptions directly supported by a simulation language, the greater the difficutty there is in
constructing the simulation model. Consequently, we have strived in KBS to support the construction of
models which closely match the way the expert views the system.

The approach taken in KBS to represent models is based on AI knowledge representation techniques
[Reddy & Fox 82a, Fox & Reddy 82, Reddy & Fox 82b, Reddy & Fox 831. The representation is a frame
based semantic network, which supports the representation of objects, their attributes, structure and
procedural behaviors, relations among objects, goals, and constraints. Models are constructed by first

6

building a set of prototypical objects which are standard within a particular domain. In the case of
distribution management, some standard objects are resellers, distribution centers, and manufacturing
sites. A specific model is built by instantiating these prototypes and connecting them via relations.

Objects in KBS are represented as schemata3. A schema is represented as in Figure 3-1, with
opening double braces followed by a schema name (printed in bold font) and a set of slot-value pairs,and
finally terminated by closing double braces.

The plttsburgh-reseller schema defines a retail sales store containing two stock items a and b. It also
defines who the manager is, its sales region, am

{{ plttsburgh-reseller
INSTANCE: Reseller
STOCK: stock-a stock-b

REGION: Allegheny
MANAGER: Ramana Reddy
ADDRESS: 123 Easy st.

ranger (type instance stock)

REORDER-PROCEDURE: Reorder-rule-1

I Flgure 3-1 : Example of a Reseller schema

its address.

In addition to values, each slot may have a set of associated facets or meta-Information (printed in
italics). The Range facet restricts the type of values that may fill the slot. The Default facet defines the
value of the slot if it is not present. The range facet restricts the types of values taken on by a slot.

The stock-a schema defines the status of the in stock part a and what has been ordered due to the
art falling below its reorder point.

{{ stock-a
INSTANCE: stock
PART: a
ON-HAND: I38
ON-ORDER: {{ INSTANCE: stock-order

PART: a
AMOUNT: 200
SOURCE: Pittsburgh
DATE-ORDERED: 1 aug 87
DATE-DUE: 15 aug 87 }}

MIN-STOCK: 200
RE-ORDER-AMOUNT: 500 }}

An important aspect of CRL is that schemata may form networks. Each slot in a schema may act as a
relation tying the schema to others. The schema may inherit slots and their values along these relations.
For example, Pittsburgh-reseller is related to reseller by the INSTANCE relation. It inherits its standard
slots from reseller, but their values are defined locally.

The procedural behaviors of an object, such as the reorder procedures for pittsburgh-reseller, are
defined by a slot which names the procedure, and by the values of the slots which define the actual

3Early versions of KBS were built on top of SRL [Wright 8 Fox 831, a knowledge engineering tool, subsequent verrions have been
implemented in Knowledge Craft’s representation language CRL [Knowledge Craft 851.

7

behavior. Values can be lisp procedures or rules. A rule provides a means of specifying procedural
knowledge which is easier to comprehend by the model builder. For example, the REORDER-PROCEDURE
‘or the Pittsburgh-Reseiier has its behavior defined I

{{ Reorder-ruie-l
INSTANCE: rule
IF: (less-than stock.on-hand stock.min-on-hand)
THEN: (Send-meSSage 30 stocksource

:message reorder
:part stock.part
:amount stock.reorder-amount)

(create-reorder-record stock) }}

I the following rule:

The rules reorders a part when the on-hand stock is below the reorder point by sending a message to
the object which is the source of the part for the reseller.

Knowledge Craft provides the model builder with a graphical interface for defining new schemata and
slots (figure 3-2), and to define the inheritance semantics of slots which act as relations. This includes
defining what information (slots and their values) is inherited, not inherited, and altered when inherited.
This feature will be useful in establishing special relationships between modelling entities that deal with
restricted access to information and automatic elaboration of requested information. For a comprehensive
treatment of this concept consult [Knowledge Craft 851.

3.2. Model Acquisition
Two philosophies exist for the acqusition of simulation models: a domain independent view where the

interface utilizes simulation concepts as the constructs to be described, versus a domain dependent view
where domain specific concepts are the constructs to be described. Experience has shown [Kahn
871 that domain specific knowledge acquisition systems provide a powerful means of acquiring models.

The philosophy taken in our work on knowledge based simulation has been to develop a set of domain
specific interfaces. With the availability of powerful knowledge engineering tools on workstations with
good graphic displays, the door has been opened for the development of rich interfaces. For example, a
descendent of the our KBS work at CMU is the Simulation Craft system developed at Carnegie Group
[Fox et al. 861. In figure 3-3 there is an example of a multiwindow interface which contains a window for
process planning and another for facility layout.

3.3. Consistency and Completeness
A recurring problem in simulation systems, including KBS, is maintaining model Consistency and

comp/e?eness. We found that much time is wasted discovering errors and holes in the model. To deal
with this problem, we use the logic programming facility of Knowledge Craft to specify completeness and
consistency rules.

A consistency constraint relating resellers and distribution-centers may be specified as:
(for-all ‘ reseller ’ (VIEWED-AS instance r e s e l l e r)

’ (there-exists ‘ dc ’ (VIEWED-AS instance distribution-center)
’ (a n d (re8d ler .SUPPLIED-BY = &)

(&.SUPPLIES = r e s e l l e r))))

This constraint may be interpreted as: for all resellers there should exist schemata of the type
distribution-center such that the schemata have consistent values for the slots SUPPLIED-BY and
SUPPLIES.

8

Relation Keys:
(1) IS-A

- Umcr Input

Figure 3-2: The Knowledge Craft Representation Building Interface

For each constraint, KBS evaluates it and reports whether it was satisfied or whether it failed. In case
of a constraint failure the interpreter provides a trace facility to determine the source of failure.

3.4. Model Reduction
The model we developed of a corporate distribution system was large in terms of the number of

facilities, and complex in terms of decision processes and levels of detail. In working with the distribution
analysts, we found that the entire model was not necessary to answer every question. Instead, a
question required a version of the model which is reduced in either breadth or depth. In particular, when
focusing on a particular region’s distribution logic, only abstractions of other regions were required.
Consequently, it was necessary to introduce a mechanism for abstracting selective portions of the model.
These alterations can be performed automatically provided the model builder has created a knowledge
framework for the task. These simplifications result in faster running models, increased model
understanding, and simplified analysis.

Model simplification techniques fall into two main categories, static and dynamic. In static techniques
both model structure and model parameters are altered; however, the event behaviors remain
unchanged. Since only static aspects of the model are affected these are called static techniques.
Dynamic techniques on the other hand alter a model’s dynamic processes. This means redefining some
of the event behaviors.

9

0

Figure 3-3: Process plan and facility layout interface

3.4.1. Static Abstraction
There are two types of static abstraction, equivalent node aggregation and data class aggregation.

Equivalent node aggregation combines several nodes into a single node of the same type. This new
node must be in some sense the sum of the original nodes. This will result in information that is unique to
the individual nodes being lost but if the new node's parameters are adjusted correctly then the new node
will be functionally similar to the old group. In this manner the rest of the model is not affected. For
example, in Figure 3-4 individual resellers in a region may be grouped together to form a regional reseller.
The &rresponding schema that describe this kind of aggregation is shc

{{ equlvalent-node-aggregation
ISA: model-abstraction
TYPE: reseller

comment type of node to aggregate
SUPER-NODE: regional-reseller

comment single node replaces sub-nodes when abstracted
SUENODES: resellerl reseller2 reseller3

comment set of nodes present at detail level
AVERAGE-SLOTS: lost-sale-percentage

comment aggregate slots filled by averaging
uNIONSLOTS: (order-weeks aggregate-weeklydemand)

comment aggregate slots filled by summation

(inventory aggregate-inventory)
(operatingdays)

SELECT: (select-node-aggregation)
DESELECT: (deselect-node-aggregation) }}

Figure 3-5: Example of Equivalent Node Aggregation

i n in F Q U ~ 3-5.

10

Detailed

Abstract

Figure 3-4: Equivalent Node Aggregation

In data class aggregation objects are grouped into classes and all references to the members are
replaced by references to the class. This of course throws away information about variations among the
class members but it should increase the overall efficiency and not greatly affect model execution.

An example of this concept as applied to the distribution model would be to group all items sold into
classes. For instance in the computer business different types of personal computers may be grouped
together into a broad class referred to as PC. This would greatly reduce the amount of data needed to
track inventory levels for each separate type of personal computer in the model.

3.4.2. Dynamlc Abstraction
Dynamic abstraction attempts to simplify simulation models by analyzing the stimulus-response event

behavior of one or more nodes, and to construct a single node with a stimulus-response behavior which is
statistically similar. This technique can be used to combine nodes of the same or different classes. The
collection of statistics on event behavior can be achieved by either constructing stimulus response
frames, or by post-processing information gleaned from model introspection. However purely statistical
information on events is difficult to use because event parameters cannot readily be asbtracted, and in
such cases the abstracted model may become inconsistent. A full treatment of abstraction techniques as
used in KBS is provided in [McRoberts, Fox & Husain 85).

4. Model Simulation
In KBS, simulation is viewed as being composed of a sequence of experiments, where each

experiment measures how well a scenario (i.e., an altered version of the original model) optimizes one or
more goals. The process of simulation begins first with the specification of a set of goals which result in
the instrumentation of a scenario in order to gather data. The scenario is then executed interactively with
an animated display. The scenario is then rated as to how well it has optimized the goals. The rest of
this section provides a detailed description of the process.

11

4.1. Goal Specification and Instrumentation
The primary purpose for constructing a simulation is to verify a hypothesis or optimize one or more

features of a system. Optimization can occur if we are able to measure the performance of a scenario.
We introduce the concept of rating a scenario as a method of measuring the goodness or badness of
simulation results. For example, if the goal is to utilize machines to their maximum (loo%), and if in a
given simulation the average utilization of machines is 90% and when confronted with the question "have
we reached the goal ?", we would like to give a better answer than no. To rate scenarios more smoothly
we chose a continuous scale of rating from -1 to +1, -1 meaning the results are far from the goal and +1
to indicate the goal has been completely satisfied. Since goals are often complex and may be composed
of conflicting sub-goals, we therefore describe here an approach to specification of goals of a simulation
as a composite of a set of constraints4 on the performance of various entities of the system being
modeled.

Following are the steps involved in the construction and evaluation of goals.
0 Represent each organizational goal as composed of a set of constraints.

0 Select and attach instruments to gather data.

0 Specify procedures for computing the performance measures from the raw data collected.

0 Execute the simulation for the given scenario.

0 Evaluate each constraint by computing a coefficient of constraint satisfaction, which may be
positive to indicate reaching the desired goal, or negative, indicating falling short of the
desired goal.

0 Evaluate the scenario by computing a coefficient of goal satisfaction as a weighted average
of constraint satisfaction coefficients.

4.1 .l. Goal Representation
A goal is an aggregation of subgoals which we call constraints. A goal is evaluated as a weighted sum

of the individual subgoal constraint satisfaction coefficients. Figure 4-1 shows an example goal which
when evaluated yields a RATING which is a measure of the desirability of the given scenario. This rating is
derived by combining the ratings of individual CONTR~BUTING-CONSTRAINTS of the goal:

order-fill-rate
inventory-turns

0 inventory-investment
0 order-cycle-time
0 distribution-cost

Other slots in the goal schema specify the procedure for evaluation and display of the results. Figure 4-2
shows the representation of a constraint. The slot CONSTRAINED-BY of the constraint schema contains the
details of the instrumentation needed to evaluate a constraint.

4Constraints are an inherent part of all organizational models. For a detailed treatment of contraints refer to Fox [Fox 831.

12

I

({lnet-pc-goal1
INSTANCE: KBS-goal
RATING: 0.35

CONTRIBUTING-CONSTRAINTS: order-fill-rate inVentOry-tUmS
comment a goodness or badness indicator

comment the individual goal constraints

comment whether active or inactive

comment a kiviat graph displays rating

comment governs when to evaluate goal

comment interprets evaluation schedule

comment goal evaluation function

commnt function to display goal state

inventory-investment order-cycle-time distribution-cost

STATUS: inactive

GRAPH: goal-report-kviat

EVALUATION-SCHEDULE: eVery-qUader

GOALSCH EDULER: scheduler

EVAL-FN: eval-KBS-goal

REPORT-FN: display-evaluated-goal
)}

Flgure 4-1 : Composite Goal Schema

{{ order-flii-rate
INSTANCE: @-constraint
CONSTRAINED-BY: order-fill-rate-spec

comment specification for constraint
CONTEXT: order-fill-rate-precondition
comment decides if constraint applies
IMPORTANCE: 0.25

RATING: 0.8

VALUE: 40000

comment relative importance of constraint

comment a goodness or badness indicator

commnt unrated raw value of constraint)}
Figure 4-2: Constraint Schema

~ ~ ____

{{ order-fill-ratsspec
INSTANCE: goal-constraint-spec
APPLY: interpolate-linear-graph

INSTRUMENTS: measure-orders-filled }}
Figure 4-3: Constraint Schema

CONSTRAINT-SPEC-OF: Ofder-fill-rak
UTILITY-GRAPH: (1 00 -1 .o) (1 0000 0.0) (60000 1 .o)

4.1.2. instruments
The task of data collection is concerned with recording the changes in the value of a parameter. This

can be accomplished by constantly monitoring the parameter and recording every change or by sampling.
The former yields greater accuracy albeit with greater computational overhead whereas the latter

13

approach may be satisfactory in many cases and thus the selection of the data collection method is
subjective. In the KBS environment the monitoring is accomplished by attaching demons to slots
whereas sampling is done by scheduling data collection events or as a separate action during the
execution of regular events. Since the data collection in KBS is analogous to physical measurements
(using measuring instruments) the notion of an instrument (figure 4-4) is introduced.

An instrument in KBS may be viewed as a probe attached to a schema representing an entity in the
model and collects specified data whenever that schema is acted upon in some way. For example, if we
are interested in studying inventory levels we may attach an inventory measurement instrument which is
activated whenever inventory levels change (figure 4-5). Whenever the instrument is activated it may
simply record the value of the simulation clock and the inventory level. This information is stored within
the instrument itself (figure 4-6) and can be formatted in a variety of ways using a report-generator
associated with the instrument. For example if we are interested in the time dependent behavior of
inventory we may subject the data collected to an analysis by a time-series-analyzer. On the other hand if
we are only interested in the minimum inventory, we can subject the same data to analysis by a

'escriptive-statistics-analyzer.

[{ KBS-instrument
ISA: instrument
PURPOSE:
I NSTRUMENT-TYPE

Range: (OR data-collection datadisplay)

Restriction: (OR demon event scheduled)

Comment slot value to be monitored or the event slot when this will be

Comment the names of generic schemata to which this instrument applies

Comment event schedule for scheduled instrument
Restriction: (TYPE is-a event-schedule)

Comment the data collection or display function

Comment the attachment procedure }}

INSTRUMENT-MODE:

SLOT-TODEPOSIT:

executed as one of the event actions
SCHEMA-TYPE:

INSTRUMENTSCHEDULE:

DATA:
ACTlON

AlTAC H ME NT-FU NCTION

Figure 4-4: KBS-Instrument Schema

Once an instrument schema is defined, it is attached to an appropriate part of the model, which when
executed, results in the collection of the spec

{{ xa50-inventory-instrument
INSTANCE: KBS-instrument
INSTRUMENT-TYPE: datacollection
I NSTRUMENT-MODE: demon
SLOT-TODEPOSIT: on-hand
S C H E M A - T Y P E : X ~ ~ ~ - ~ ~ V ~ ~ ~ O ~ ~
DATA: xa5O-inventorya1-hand-data }}

I Figure 4-5: Inventory Instrument Schema

fied data which can be subjected to analysis.

14

{{ xa50-inventory-on-hand-data
INSTANCE: setdata
SCHEMA-SET: set of xa50 inventory schemata derived from the instrument
SLOT: on-hand
ANALYSIS: descriptive-stats
DATA: to be filled by the instrument }}

Figure 4-6: Inventory Data schema

The specification of the instrument and data schemata is to be derived manually. However, it may be
possible to automate this process in the future by using a natural language deductive reasoning system.

4.1.3. An Example of Scenario Rating
In this section we will illustrate the procedure for rating a scenario via an example from the CDS model.

Consider a composite organizational goal to increase customer satisfaction while keeping the distribution
overheads low. This goal may be brokendown into two subgoals:

0 Customer stockouts should not exceed 5% of orders.

0 Distribution cost per unit sold should not exceed 10% of the cost of manufacturing.

{{ inet-pc-goail
INSTANCE : KBS-goal
CONTRIBUTING-CONSTRAINTS: satisfycustomer economize-distribution
EVALUATION-SCHEDULE: daily-at-midnight }}

Figure 4-7: An example of CDS’s goal

The corporate goal specified by the schema: inet-pc-goail is a composite of two organizational goal
constraints: satisfy-customer and economize-dlstributlon. These are shown in figures 4-8 and 4-9
respectively. Each goal constraint is assigned an importance rating based on the role it plays in the
overall corporate plan. Each goal constraint schema points to a constraint specification schema which
specifies a utility function and the needed data collection instruments. Figures 4-10 and 4-1 1 show the
constraint specifications for the satisfy-customer and economize-distrlbutlon constraints.

{{ satisfy-customer
INSTANCE: goal-constraint
CONSTRAINED-BY: Satkfy-UistOmer-SpeC
IMPORTANCE: 0.70 }}

Figure 4-8: Retailer Satisfaction Goal Constraint

{ { eco nom ize-d 1st r ibut io n
INSTANCE: goal-constraint

CONTEXT: economize-distributin-pream
CONSTRAINEDBY: economize-distribution-spec }}

IMPORTANCE: 0.30

Figure 4-9: Distribution Cost Reduction Goal Constraint

15

measure-stockouts and measure-totaladem !

({ measure-stockouts
INSTANCE: KBS-instrument
INSTRUMENT-TYPE: data-collection
I NSTRUMENT-MODE: event
ACTION: extract-stockout-info
SLOT-TODEPOSIT: back-orders
SCHEMA-TYPE: }}

Figure 4-12: Instrument to measure Stockouts

1 I

{{ measure-distribution-costs
INSTANCE: KBS-instrument
I NSTRU MENT-TYP E: data-co llectio n
INSTRUMENT-MODE: event
ACTION: computedistributioncosts }}

Figure 4-14: Instrument to measure Distribution Costs

{{ satlsfy-customer-spec
INSTANCE : goal-constraint-spec
APPLY: eval-customer-satisfaction
UTILITY: stockouts-utility-graph
INSTRUMENTS: measure-stockouts measure-total-orders }}

Figure 4-1 0: Specs for Customer Satisfaction Constraint

{{ economize-distribution-spec
INSTANCE: goal-constraint-spec
APPLY: eval-distribution-costs
UTILITY: distribution-utility-graph
INSTRUMENTS: measure-manf-cost measure-distribution-costs }}

Figure 4-1 1 : Specs for Distribution Goal Constraint

In order to evaluate the goal constraint: satisfycustomer we need to measure the total orders filled as
well as the number of stockouts. This is accomplished by depositing the instruments:

{{ measure-total-orders
INSTANCE: KBS-instrument
I NSTRU MENT-TYP E: dat a-collectio n
INSTRUMENT-MODE: event
ACTION: sum-up-total-orders }}

Figure 4-13: Instrument to measure Total Orders

wwn in figures 4-12 and 4-13 respectively.

16

{{ measuremanf-costs
INSTANCE: KBS-instrument
I NSTRUMENT-TYP E: data-collectio n
I NSTRUMENT-MODE: event
ACTION: compute-manf-costs })

Figure 4-15: Instrument to measure Manufacturing Costs

The instrument action functions will be tailored to extract the desired information and update the "data"
in the instrument. Note that instrument data may also be directly available in the schema it is attached to.

Having defined the goal, its constraints and the instruments, it is then connected to the model. When a
goal is connected the relevant instruments are automatically attached to the model. The actual
evaluation of the goal is an event scheduled to occur at some future date according to the
EVALUATIONSCHEDULE, at which time the EVAL-FN is executed. However, it may also be evaluated
manually at any time as desired.

A goal evaluation function (e.g. eval-KBS-goal) will normally retrieve the CONTRIBUTING-CONSTRAINTS of
the organizational goal. For each constraint if the context of the constraint applies then the constraint is
evaluated by the function in the APPLY slot to compute a rating. This rating weighted by the importance
of the constraint contributes to the overall "rating" of the organizational goal. If the goal is evaluated more
than once it should be possible to observe the direction and decide how good or how bad the
organization is doing.

4.2. Experiment Specification
Execution of the model consists of simulation runs. Each run of a model is an experiment. KBS defines

schemata which contain all the information needed to conduct a series of experiments on models. At the
end of each experiment, KBS may optionally Yire" a rule base which may suggest changes that need to
be made to the model in the next experiment.

In Figure 4-16 KBS-run-spec specifies the profile for a simple run. RUN-DISPLAY governs what is going
to be shown on Screen during model execution. If the user is interested in the execution trace of model
EVENT-TRACE is activated, and in addition, if system statistics such as events per second of CPU time are
needed SYSTEMSTAT is turned on. START-TIME and STOP-TIME refer to the simulation clock. Note, if there
are no events in the calendar or if a terminating condition is met, the experiment may stop before the
Clock reaches STOP-TIME.

17

{{ KBS-run-spec
RUN-DISPLAY: kbs-run-display

EVENT-TRACE: t

SYSTEM-STATS: t

SYSTEMSTAT-FREQUENCY: 20

START-TIME: "12 sept 1985"

STOP-TIME: "25 sept 1985"

comment the display which is active during the run

comment if event trace is posted to the display

comment if system stats are needed

comment tells how often system statistics are updated

comment start time for each experiment

comment stop time for each experiment)}
Figure 4-16: The Run specification

Figure 4-17 shows the execution profile needed to conduct a series of experiments. It specifies options
for model introspection (LEARNING-REQUESTED), goal-directed scenario rating (RATING-REQUESTED),
automatic diagnosis and correction of model parameters through rule-based analysis (RULESREQUESTED,
RULE-SET, ITERATION-LIMIT) and management of related experiments (INITIALIZATION, EXPERIMENTSTO-BE-

lONE, COMPLETED-EXPERIMENTS, BASE-CONTEXT).

{{ KBS-expert-Nn-spec
INITIALIZATION: initialize-run
LEARNING-REQUESTED: no

comment if introspection is requested
range: (or yes no)

RATING-REQUESTED: no
comment if scenario rating is to be done, implies goals need to be connected
range: (or yes no)

LEARNED-DATABASE: nil
comment: Name of file to save learned information

RULESREOUESTED: yes
comment: if automatic diagnosis is required
range: (or yes no)

resfrktion: (TYPE instance KBS-experiment)

comment: Specifies Rule set to use in diagnosis

comment: Number of experiments before the expert system gives up

comment: the current run number

comment context where the base model resides,

EXPERIMENTSTO-BE-DONE: 64

COMPLETED-EXPERIMENTS: 81 e2
RULESET: bottleneckdiagnosis

ITERATION-LIMIT: 8

CURRENT-ITERATION: 3

BASECONTEXT: kbs-startcontext

?xperimental contexts are children of it)}

Figure 4-17: Expert System Run spec

The KBS-experiment schema in Figure 4-18 describes individual experiments. The slot
MODEL-CHANGES is filled with a set of "change specs", which describe the changes that need to be
performed on the model before the start of each experiment. In addition there are slots (not shown)

18

whose values reflect the status of that experiment.
I

11 e3
INSTANCE KBS-expe rime nt
EXPERIMENTAL-CONTEXT: kbs-experiment-context3

MODEL-CHANGES: e4-change-spec
comment context for this experiment, child of base-context

comment provides a description of the model for this experiment. The base-model is
altered accordingly

.....
ITERATION: 3

comment the iteration this experiment corresponds to }}

Figure 4-18: Specification of an Experiment I
KBS supports a feature rarely found in traditional simulation environments. It is the ability to conduct a

series of experiments without human intervention. The important point to note is that individual
experiments are not disjoint but are improvements on past experiments, where the improvements are
automatically achieved by rule-bases detailing the diagnosidcorrection heuristics. In order to work
correctly the rules must allow for reasoning between several model scenarios. Management of alternate
scenarios in KBS is possible by creating a context tree where each context is devoted to a scenario.

4.3. Simulation Execution
In discrete event simulation the system changes state at discrete points in time. Running the model

simply consists of executing the next imminent event from the calendar of events until there are no more
events to execute or some halting criteria are satisfied. Each event notice in the calendar specifies the
the name of the event, its focus, the time and any parameters that should be available at the execution
ime. In the example event notice, (see fiaure 4-19 1

{{ event24
INSTANCE: eVent-nOtiCS
FOCUS : pittsburgh-reseller

comment Focus of event, the entiiy

comment event-slot in event-schema
: "21 April 1985 11 :OO:OO"

comment Time of execution

comment Action to take before event execution

comment Action to take after event execution

comment Event parameters

comment method to execute event)}
Figure 4-19: An example Event Notice

EVENT OrdW-arrivai

TIME

PRE-ACTION: nil

POST-ACTION: nil

EVENT-PARAMETER: Order1 0

RUN-EVENT: mn-event

an event "order-arrival" is to occur on "21 April 1985" at 11:OO:OO AM simulated time and is focused
around plttsburgh-reseller. The execution of this event is accomplished by the following steps:

the simulation clock is advanced to "21 April 1985 11 :OO:OO"

the value of the slot ORDER-ARRIVAL of the schema pittsburgh-reseiler is extracted

19

0 each item found in the list of values is interpreted

The items found in the list of values in the event slot may be representing a LISP function, a rule or an
instrument which are designed to collect data, display some text or produce graphic side-eff ects.
Simulation proceeds by successively executing event notices until a prespecified terminating condition is
met.

4.3.1. Checkpoints and Interrupts
Checkpoints are used in KBS to save the state of a model during the experiment along with run-time

system information such as the simulation clock, the calendar and other global variable bindings.
Checkpoints are also implemented through the use of contexts. Before the experiment is initialized a new
context kbs-run-context-n which is a child of the experiment context is created to protect that experiment
from getting "corrupted" by subsequent modifications. After the prime event" (Le. the event that sets the
simulation in motion) another context kbs-run-context-n+7 a child of kbs-run-context-n is spawned. In
addition, the user may interrupt the simulation any number of times to checkpoint the model. This facility
allows the user to backtrack to some previous point in execution to compare the differences between
progressive scenarios. We refer to checkpoints as snapshots of models within the same experiment.
Checkpoints are useful when comparing different scenarios in a single experiment.

4.3.2. Tracing
A simulation analyst often follows hunches when debugging simulation models. This style of debugging

is different from stepping instruction by instruction, which can be frustrating if, for instance, the analyst is
only interested in events focused around Pittsburgh-reseller. In tracing with graphics, the user fills in a
trace-spec and the system traces only under conditions declared in the schema. For example, it is
possible to selectively observe pitfsburgh-reseller: order-anival when scheduling, in which case all other
events are deemed uninteresting and will not feature in the trace. It is also possible by default to trace
everything.

In Figure 4-20 we show a photograph displaying the event to event interaction in the CDS model. The
rectangle in the center shows the focus of the current event, "westfield-manufacturing" scheduling two
other events focused around "lek" and "transportation". In practice, we found this to be a powerful
feature because it makes the modeler understand the internal workings of the model thus improving one's
confidence in the results of the model.

Figure 4-20: Tracing with Graphics in actual runs

20

4.3.3. Stepping
In tracing we saw how events are displayed while they execute. However, due to the limitations of the

screen or due to the unavailability of a graphics device, it is useful to have a stepping capability. As
events are executed they change values of attributes and such state changes are observed step by step
in a window dedicated to stepping. A step command is all that is needed to switch on this kind of trace.
Stepping is similar to tracing everything, but, without the use of graphics. Attribute value bindings are also
shown here because information is displayed textually. To summarize the difference between tracing and
stepping, it is easier to detect event attribute chains in tracing, but it is not possible to observe individual
event parameters which is better done by stepping.

4.3.4. Event Tracking

their interaction with entities and their attributes.
The automatic analysis of simulation data (section 5) requires the recording of event sequences and

For example, figure 4-21 is an example of an event track which includes events E,. and attributes X. If
we declare that X, causes E, because E, depends-on X, then the system can automatically deduce tiat

21

affects
E2 x4

causes

3.

Figure 4-21 : Event Tracks

X, indirectly affects X, thus tracing a causal path from X, to X45.

Event tracks are stored as meta information attached to slots which define event behaviors and
attributes which are accessed or affected by events.

4.3.5. Simulation Animation
Graphic animation is sometimes the most effective way to represent the dynamics of a simulation. In

very large models the screen may not be large enough to display all the information at once to all
audiences. In such cases several views of the model may be presented just as is done in perusal. Here,
in addition to intelligent use of changing icons and colors, special effects such as flashing and life-like
movement may be shown.

%ere is an important limitation in the automatic detection of causeeffect chains when the attributes are included. The system
can only detect how an event affects an attribute and not vice-versa. For example, the system is capable of detecting the fact that
the "inventory' is reduced, when the event 'sellgoods' is executed. But another fact that the reduction in 'inventory" has the effect
of causing the event "order-for-goods" goes unnoticed. However since the value of "inventory' is accessed during the event
"order-forgoods' therefore, for automatic tracing we may make the assumption that accesses implies dependson.

22

Figure 4-22: Animation of the inet-pc model

Figure 4-22 shows the use of changing colors of icons and animating can be used to effectively
communicate the performance of a model scenario.

4.3.6. Report generation
In KBS, performance data is collected by "instrumenting" the model. The data thus collected is stored

in the instrument itself or in some other schema. This data has to be summarized and presented before it
can be of any use. These summary reports themselves can be generated by using "Report Instruments"
that are attached to event slots. As the events are executed, appropriate reports also appear as those
instruments are executed. This can take the form of a "textual report" or "graphic side effect" which
updates the display sceeen.

23

Figure 4-23: Example of Business Graphics

24

Figure 4-24: Reports using windowed Displays

Figure 4-23 is a typical bar chart produced by KBS. Figure 4-24 shows how a summary report can be
displayed using muttiple windows.

4.4. Experiment Rating

of a distribution network. After a few days of simulated time the goal was evaluated and reported.
The inet-pc-goall discussed in the example on rating scenarios was actually implemented on a model

25

Figure 4-25: Example of Goal Evaluation

Figure 4-25 shows a goal evaluation report produced by KBS for the CDS model.

This result indicates that customer satisfaction was bad because it was rated negatively (-0.9) but the
distribution costs were economical and were rated at 0.8 which is good. However the overall goal rating is
still unsatisfactory because of its negative rating.

Overall goal rating
= w t . avg. of individual constraint ratings
= (0 .3 * 0 . 8 + 0 .7 * -0 .9) / (0 .3 + 0.7) = - 0 . 3 9

It has been shown in detail how goals, constraints and instruments work in harmony to rate model
scenarios. This means we can collect data from a model run, define and connect goals to the model and
be able to tell how good the model is behaving with respect to the organizational goals. The instruments,
goals and constraints are constructed manually but data-collection and reporting are done automatically.

When goals are more complex, they may be viewed graphically with the help of a Kiviat chart like the
one shown in Figure 4-26.

Figure 4-26: Complex Goals viewed Graphically

26

In Kiviat graphs all performance parameters that are "good" when they assume large values are plotted
above the X axis while the performance parameters which are "bad" when they are large are plotted
below the X axis. The shape derived by connecting these parameters can quickly present a view that
shows whether the current scenario is good or bad (bad scenarios have large areas below the X axis).

5. Automatic Analysis of Data
A major goal of our research in KBS has been to use knowledge to automate the analysis of data

generated by simulation experiments and to suggest ways in which the model can be altered to further
optimize the goals and constraints. One method is to use an expert systems approach where a set of
experts are interviewed in order to identify and codify their expertise. We believe this is an important first
step; any knowledge not widely available to the simulation community at large, which can be made
available as part of the simulation system, can have an important impact. An example of this approach
can be found in Simulation Craft [Fox et al. 861 where expertise is used to identify and correct bottleneck
situations. In figure 5-1, the report window (upper left) defines the goals to be satisfied by the experiment
(e.g., cost, machine breakdown, resource utilization), the exception window (lower right) identifies the
constraint deviations (e.g., poor utilization of machines), and the suggestions window (lower left)
recommends a change to the model to maximize the goals (add more machines).

27

Flgure 5-1: Simulation Craft Analysis and Treatment

In KBS, we have extended this approach. Recognizing that many of the systems which the user
wishes to model are quite complex and possibly unique, the amount of available expertise may be limited.
Though general rules which describe the causal relations among variables may exist, they may be too
general to capture the details of the particular system being modeled. Our approach takes rule based
expertise as a starting point. By analyzing data gathered by event tracking using a procedure known as
path analysis, we are able to learn refinements for the rule set.

5.1. Learnlng Rules Using Path Analysis
Path analysis was originally introduced by Sewall Wright [Wright 21 J [Wright 341 [SPSS 781, as a

method of analysis by which the qualitative knowledge that we have regarding causal relations may be
combined with the quantitative knowledge of the degree of relationship furnished by correlation and
regression. In other words it is a method of measuring the direct influence along each separate causal
path in a causal network of variables in a system, and thus of finding the degree to which variation of a
given effect is determined by each particular cause. It must be emphasized that the method of path
coefficients is not intended to accomplish the impossible task of deducing causal relations from the values
of the correlation coefficients. However, in cases in which the causal relations are uncertain the method
can be used to find the logical consequences of any particular hypothesis.

28

In KBS, path analysis is used to refine the heuristic knowledge provided by an expert. In particular, it is
used to elaborate the simple causal relations normally found in rules to include interactions among
variables found "buried" in the model, and to refine the degree to which variables are causally related. In
other words, KBS performs a type of learning where heurstic knowledge is refined based upon the
outcome of simulation experiments. The following outlines the tasks in the learning process.

0 A Rule is proposed by the domain expert.

0 The causal assumptions on which the rule is based are validated against the running model.
Validation implies detection of causal chains in KBS models. The rule may need to be
modified if the initial causal assumptions were either erroneous or insufficient.

Alternate causal structures are then proposed and automatically analysed. The most
appropriate causal structure is chosen, and the results summarized to yield an equation that
reflects the sensitivity of the Output parameter with respect to the controllable Input
parameters. Thus path analysis is used to find the degree to which variation of a given effect
is determined by each particular cause in the system being modeled.

The sensitivity information is used to quantitatively refine the rules.

5.2. A Detailed Example
In the CDS domain several areas for analysis were isolated, namely Inventory Policy, Capacity

Planning, Topology Planning, and Operational Planning. Of these Inventory Planning, has been singled
out for Path Analysis mainly because the topic is familiar and numbers are easier to relate to. A typical
example will best illustrate the series of steps that are taken to arrive at a refined rule starting from a more
general rule proposed by the domain expert.

Example of a Diagnosis/Correction Rule:

IF The Goal is to minimize 8tOCkOUt8 and
Average-Inventory is L o w and Stockout8 are High
and Production Rates can be monitored

Increase the Production rate
THEN

To be specific the Rule must refer to actual instances of objects in the model and we proceed with the
inet-pc model of the CDS domain shown in Figure 2-1.

By concentrating on Manufacturer M, and Distribution center D, the Rule becomes a bit more specific
expressed as:

IF The Goal is to minimize D1:stockouts and
D1:Avg-Inventory is L o w and
and M 1 :pmduction-rate can be altered

Increase M 1 prvduction-rate

D1:Stockouts are High

THEN

Drawing upon the CDS model D1:stockouts ("30 of orders not filled) is an Output parameter and
Mlpmduction-rate is an Input parameter. A few causal structures, as shown in Figure 5-2, are then
proposed which attempt to include the variables in the rule causally connected to each other along
different paths.

29

Unknown
Unknown M1 :production-rate
T2 -% 47; ! D1:st~kout o - 2 8 M1:production-rate - b D1:stockout

-0.79

D 1 :avg-inventory
(a) (b)

Unknown 0.32

\
D 1 :avg-inventory

\ -1 .73 Unknown

0.84 M 1 :productic

I 0.28 \.
Unknown Unknown

-0 .92

D1:stockout
0 . 9 5 %:

M 1 :production-rate - b D 1 :avg-inventory

Figure 5-2: Causal Hypotheses in inet-pc model

We first verify with the help of event tracking whether DlAAvg-lnventory, D1:stockouts and
Mlprvduction-rate are indeed causally connected to each other. For example in Figure 5-2 (b) we must
verify whether Mlpmduction-rate is connected via an events chain to D1:stockouts and
D1:avg-inventory, and similarly if D1:avg-inventory is connected to D1:stockouts. The causal chain
connecting M 1 :production-rate to Dlstockouts is shown in Figure 5-3.

m:manufacturing W1:send-shipwnt Dl:receivt8hipment D1:receive-order,
event --) event event f event ,

k
v \ 08 / '\

0' m * '\
.e

08'

U1:production-rate D1:inventory D1:6tOckOUtS
a t t r i b u t e a t t r i b u t e a t t r i b u t e

Figure 5-3: Causal Chain derived from Event Tracking

30

As can be seen from Figure 5-4 the causal assumptions for all Figures 5-2 (a) (b) (c) and (d), are valid.

Figure 5-4: Validating hypotheses

Figure 5-2 (a) is purposely included to show the naive approach which would be taken in the absence
of Path Analysis, by ignoring the intermediate variable D1:avg-inven?ory. It must be stressed here that
the search algorithm used to discover causal paths can find all paths existing between two model
variables given time and resources but currently it returns with the first path found. Thus the causal chain
in Figure 5-3 is not the only possible path between Mlpmduction-rate and Dlstockouts and it would be
wrong to place great faith in that path and recommend that the correct causal structure from the several
alternatives in Figure 5-2 is (d)6

A series of experiments are then designed to measure D7:avg-inventory and D7:stockouts while
changing M7.pfoducton-fate and results of these experiments are shown in Table 5-5.

% is a coincidence that in this example it turns out that it is the most appropriate hypothesis.

31

Experiment

1
2
3
4
5
6
7
8
9
10

M 1 :Production Rate

30
50
60
70
80
100
120
140
160
180

D 1 :Stockouts

48.592
48.449
48.470
48.290
48.205
48.122
48.248
48.152
44.256
41.264

D 1 :Avg-Inventory

11.41
14.24
13.66
14.47
17.30
15.90
17.99
19.54
25.09
28.68

~ ~ ~ ~

Figure 5-5: Results of Experiments on inet-pc model

Using the above results, all alternate causal structures (hypotheses) Figure 5-2 (a) through (d) are
subjected to Path Analysis and the coefficients in the Path Diagrams are computed. Example schemata
rom the causal structure representing hypothesis h l are shown in Fiaures 5-6,5-7,5-8 and 5-9.

INSTANCE: CaUSal-neWOrk
MODEL-NAME: inet-pc

{{ hl

comment: model for which causal analysis is being conducted

comment: a set of model variables to be studied

comment: a set of computed causal paths in the network

comment: a method for conducting path analysis

NODES: stockouts1 inventoryl production-ratel

PATHS: inventoryl -stockouts1 production-ratel -to-stockoutsl production-rate 1 -to-inventory 1

ANALYZE-PATHS: do-path-analysis
}}

Figure 5-6: An Example Causal Hypothesis

32

I I

{ stockoutsl
INSTANCE: causal-node
NODE-OF: h l

CAUSES: nil
comment: The causal network this node belongs to

comment: The nodes caused by this node

comment: The nodes which cause this node

comment: The data schema which contains observations and information for mapping
data in the model to data suitable for causal analysis

comment: A symbolic equation relating this node to all the lnput nodes on which it directly
or indirectly depends on. An lnput node is a model variable which can be altered

comment: A symbolic equation relating this node to immediately preceding nodes on
which it directly depends on.

comment: the unknown component expressed as a standardized path coefficient }}

CAUSED-BY: inventoryl production-ratel

DATA: StoCkOUt

PATH-EQN: 39.629 - 0.837 production-ratel

REGR-EQN: 48.62 - 0.45 inventoryl + 0.01 67 production-ratel

RESIDUE: 0.1 16

Figure 5-7: An Example Causal node

{{ Inventoryl-to-stockoutsl
INSTANCE: causal-path
FROMNODE: inventory1

TO-NODE: stocko~tsl
comment: the causing node in the path

comment: the effect node in the path

comment: the standardized path co-efficient
PATH-COEFFICIENT: -1 .I 52

}}

I Flgure 5-8: An Example Causal Path I

{{ stockout
INSTANCE: model-variable
OBSERVATIONS: 36.37 31.95 22.87 25.44

comment: a list of values of the translated model variable, one for each experiment

comment: a message to fill up the observations slot from the results of experiments

comment: name of model from where data is to be extracted }}

ACTUAL-VARIABLES: (D1 total-orders) (D1 back-orders)
TRANSLATE-RESULTS: extract-stockouts

MODEL-NAME: inet-pc

Figure 5-9: The Model variable schema

33

Figure 5-10: Analyzing Hypotheses

Figure 5-10 shows the regression equations derived from various hypotheses (the schemata for h l are
shown in figures 5-6 through 5-9). The residual (unknown) influence on D1 :stockouts 0.62 in (a) is higher
than that in (b), (c), and (d) which is 0.28, thus suggesting that hypothesis (a) should be dropped from
further consideration. From among (b), (c) and (d) we reject (b) and (c) because the path coefficient from
MI :production-rate to D7 stockout is positive leading us to incorrectly believe that increasing production
rate results in an increase in stockouts. Thus the most appropriate hypothesis is Figure 5-2 (d) and from
the unstandardized path equations we derive the sensitivity information necessary to improve the rule.

34

The Regression equations:

D 1 :stockouts = - 0 . 4 1 8 D1:avg-inventory + 5 4 . 6 5
D 1 :avg-inventory = 7 - 6 93 0 - 1 0 2 M 1 production-rate +

Summarized Path analysis:

D1:stockouts = - 0 .0428 Mlproduction-rate + 5 1 .44

Sensitivity :

6 (D1 stockouts) /6 (Mlproduction-rate) = - 0.0428
G(Ml:production-rate) /6(Dl:stockouts) = - 2 3 . 3 8 2

Without Path Analysis we would have assumed:
D1:stockouts = - 0 .038 Mlproduction-rate + 5 1

Getting back to the rule, a possible refinement may be
IF The Goal is to keep D1:stoCko~t~ below 40 % AND

D1:Avg-Inventory < 30 AND
D1:Stockouts are in the range 40 % - 5 0 % AND
Mlproduction-rate can be altered

M1 production-rate = M1 .production-rate + 2 3 . 3 8 (D1 :stockouts - 40)
THEN

As seen above in simple cases Causal Path Analysis reduces to ordinary Linear Regression, and by
plugging in the value of the Input (causing) variable into the regressed equation we can predict the
expected value of the Output (caused) variable. However in a more complicated case such as that of
Figure 5-2 (d) a Causal Correction is applied to the Regression coefficients before predictions can be
made. For a detailed treatment on the subject of Path Analysis refer to [Wright-21] [Wright 341 [Li
751 [SPSS 781.

6. Automating the Simulation Life Cycle
A important component of a knowledge based simulation system is the reasoning architecture used to

manage the simulation life cycle. Both KBS and Simulation Craft [Fox et al. 861 use a goal directed
reasoning architecture where each stage of the simulation life cycle is defined as a separate goal with a
set of rules which:

identify sub-tasks to be performed

initialize each sub-task at the appropriate time

identify when the sub-task is completed

signal when the entire goal is completed
In figure 3-3, the bottom right window lists the current sequence of sub-tasks being managed by the
system. In addition, unless required sub-tasks are completed in one stage, the user cannot move on to
the next. For example, in figure 3-3, the upper right window defines a set of "pending activities" remaining
to be completed before the model is complete enough to be simulated.

0' W:J:

1
&G-
I' +O+

/

Figure 6-1 : Architecture of a KBS based Expert System

Figure defines the goal network in KBS. The following outlines the sequence of activities performed by
the user.

0 The user interface process (UIP) receives a request from the user.

If it is a simple request for information, the model database is accessed to retrieve the
appropriate information.

If it is a request for a prescr@tion (Le. a goal oriented request), the request is analyzed by a
Rule-based goal-analyzer.

0 This analysis may result in invoking an appropriate Operations Research tool, or a
specification to conduct a series of experiments, or a specification to execute the simulation
model in the "learn" mode to detect causal relationships.

When causal relationships are detected, they may enhance the "domain rule base" which is
used in analysis.

.After an experiment is conducted the results are analyzed. If they are satisfactory with
respect to the goal, Le. a high rating was achieved for that scenario, then a recommendation
is made based on the best scenario. If the results are not satisfactory then the
analysidcorrection rules are fired, which may generate change specs for the next experiment
to be conducted.

Several types of analyses can be performed by KBS, in order to satisfy a specified goal:
Static Analysis. This is used when no time dependent information plays a role in the

Performance Analysis. This is used when one of the following is requested:

analysis.

Rating of a given scenario.

Analysis. This is used to detect the causes of unsatisfactory behavior of the model.

*Scenario Generation. This is used when a number of scenarios have to be tried
before a prescription can be provided.

36

Trade-off. This is used when it is necessary to compare several given scenarios.

0 Learning. If the objective of executing the simulation model is to detect embedded causal
relationships, the model is executed in the "learn" mode and subsequently processed by the
causal analysis module.

Mathematical Analysis. If the goal-analyzer determines that the current request can be
satisfied by a mathematical analysis rather than simulation, an appropriate analysis tool will
be invoked.

Figure 6-2 shows a log of the execution of a simulation model which was automatically analyzed
resulting in the construction of the improved scenario kbs-experiment-2.

Figure 6-2: Recommendation from Automatic Analysis

The run specifications that produced this analysis are shown being entered by the user in picture 6-3.

37

Figure 6-3: Simulation Run Profile

7. Conclusions
Since 1980 KBS has been a testbed for experimenting with knowledge-based techniques for model

building, execution and analysis. As such, it has proved invaluable in identifying user needs and testing
approaches to solving them. In retrospect, the first step of using a schema representation and a
combined object and rule-based programming paradigm for representing simulation knowledge and
behavior was perhaps the simplest and most intuitive. It made model creation more easy because
models could be buitt using objects specific to the domain. It also made understanding the model easier.
But there is a limit to both the ease of creation and understanding. As models became more complex the
use of simple schema editors did not suffice for creation and perusal. Powerful graphics-based model
building facilities were not explored due to the lack of facilities. By combining good graphics and
knowledge-based techniques, such as model verification, interfaces may be constructed to support the
building of more complex models.

Perhaps the most important aspect of KBS is its focus on automating the simulation life cycle. First,
KBS provides a goal directed architecture which manages the life cycle enabling the clean interleaving of
the reasoning performed by the user and the embedded expertise. Secondly, KBS provides an
automated analysis capability where not only rule based expertise can identify and recommend

38

corrections for problems, but rule refinements can be learned by analyzing simulation data. The purpose
of performing simulation is to produce data, which when analyzed will identify interesting aspects of the
model. It is often the case that the data is voluminous and the analyst lacks requisite skills. By
embedding knowledge into KBS to automate the analysis, such expertise can be uniformly and
consistently applied across many applications.

The ultimate goals of applying knowledge-based systems to simulation should be to reduce the total
time in the simulation life cycle, and to increase the quality of the results by making available expertise not
readily available to the end user. KBS represents a good first step along this path.

8. Acknowledgements
The authors thank Digital Equipment Corporation for supporting this and other related research projects

in the Intelligent Systems Laboratory. Thanks are also due to Dr. Donald Butcher and Dr. Stanley
Wearden for suggesting the use of the Path Analysis approach to Causal Analysis.

39

References

[Fox 791 M.S. Fox,
On Inheritance in Knowledge Representation.
In Proceedings of the International Joint Conference on Artificial Intell@ence. 95 First

St., Los Altos, CA94022,1979.

[Fox 831 M.S. Fox.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
Technical Report, Camegie-Mellon University, 1983.
CMU-RI-TR-85-7,lntellgent Systems Laboratory,The Robotics Institute. Pittsburgh,PA.

Observations on the Role of Constraints in Problem Solving.
In Annual Conference of the Canadian Society for the Computational Studies of

[Fox 861 M. S. Fox.

Intelligence. University of Quebec Press, 1986.

[Fox & Reddy 821 Fox, M.S., and Reddy, Y.V.
Knowledge Representation in Organization Modeling and Simulation: Definition and

In Proceedings of the Thirteenth Annual Pittsburgh Conference on Modeling and
Interpretation.

Simulation, pages 675-683. University of Pittsburgh School of Engineering, April,
1982.

[Fox et al. 861 M. S. Fox, N. Sathi, V. Baskaran, J. Bouer.
Simulation Craft: An Expert System for Discrete Event Simulation.
In Simulators 111: Proceedings of the SCS Simulators Conference. The Society for

Computer Simulation, San Oiego, CA, 1986.

[Kahn 8 7 Kahn, G.S.
From Application Shell to Knowledge Acquisition System.
In Proceedings of the International Joint Conference on Artifma1 lntell@ence, pages

355-359. Morgan Kaufmann Publishers, IN., 95 First Street, Los Altos, CA 94022,
August, 1987.

[Klahr & Fought 80)
P. Klahr and W.S. Fought.
Knowledge-based Simulation.
In Proceedings of the fitst Annual Conference of the Arne- Assodation for Artificial

lntell@em, pages 181-183. Stanford CA, 1980.

[Knowledge Craft 85)
Knowledge Craft
Camegie Group Inc, 650 Commerce Court, Station Square, Pittsburgh PA 15219,

1985.

[Li 751 C.C.Li.
Path Analysis - a primer.
Boxwood Press, 183 Ocean View Blvd, Pacific Grove, CA 93950,1975.

D. McArthur and H. Sowizral.
An Object Oriented Language for Constructing Simulations.
In Proceedings of the International Joint Conference on ArtiWal lntellgence. 95 First

[McArthur & Sowizral81)

St., Los Altos, CA94022,1981.

40

[McRoberts, Fox & Husain 851
McRoberts, M., Fox, M.S., and Husain, N.
Generating Model Abstraction Scenarios in KBS.
In Adificial Intelligence, Graphics, and Simulation: Proceedings of the 1985 SCS

Multiconference, pages 29-33. The Society for Computer Simulation, San Diego,
CA, 1985.

[Reddy & Fox 82a] Reddy, Y .V., and Fox, M.S.
KBS: An Artificial lntell@ence Approach to flexible Simulation.
Technical Report, Camegie-Mellon University. 1982.
CMU-RI-TR-82-1 ,The Robotics Institute,Pittsburgh, Pa.

Knowledge Representation in Organization Modeling and Simulation: A Detailed

In Proceedings of the Thirteenth Annual Pittsburgh Conference on Modeling and

[Reddy & Fox 82b]Reddy, Y.V., and Fox, M.S.

Example.

Simulation, pages 685-691. University of Pittsburgh School of Engineering, April,
1982.

[Reddy & Fox 831 Reddy, Y.V., and Fox, M.S.
KBS: A Knowledge Based Simulator - User's Manual.
June, 1983
CMU Robotics Institute, Internal Working Document, June 1983.

[Reddy et al. 831 Reddy, Y.V., Fox, M.S., Doyle, K., and Arnold, J.
INET: A Knowledge Based Simulation Model of a Corporate Distribution System.
In Prooeedings of the /€E€ Conference on.+rends a n d ~ k a t b n s , pages 109-1 18.

IEEE. Gaithersburg, MD, May, 1983.

Reddy, Y.V., Fox, M.S., Husain, N., and McRoberts. M.
The Knowledge-Based Simulation System.
IEEE Software : 26-37, March, 1986.

Reddy, Y.V., Fox, M.S., and Husain, N.
Automating the Analysis of Simulations in KBS.
In SCS Multjcvnference on AI, Graphics and Simulation. January, 1985.

PSRL: An SRL-Based Production Rule System - Reference Manual for PSRL Version

Technical Report, Camegie-Mellon University, 1982.
CMU-RI-TR-85-7, The Robotics Institute, Pittsburgh, PA.

Sathi, A, Fox, M.S., and Greenberg, M.
Representation of Actiiity Knowledge for Project Management.
IEEE Tiansaclions on Pattern Analysis and Machine 1ntelligenae PAMI-7(5): 531 -552,

[Reddy et ai. 861

[Reddy, Fox 8 Husain 85)

[Rychener 821 M.D. Rychener.

1.2.

[Sathi, Fox & Greenberg 851

September, 1985.

[Sathi, Morton & Roth 861
A. Sathi, T. E. Morton, and S. Roth.
Callisto: An Intelligent Project Management System.
AI Magazine : 3442.1986.

[SPSS 781 SPSS Manual
1978.

41

[Venkataseshan & Reddy 84)
Venkataseshan, B., Reddy, Y.V.
An introspective environment for Knowledge Based Simulation.
In Proceedings of the Wnter Simulation Conference. 1984.

Correlation and Causation.
Journal of Agkulturai Research ,1921.

The Method of Path Coefficients.
Annals of Ma#ematM StatMks. 1934.

SRU1.5 User Manual.
Technical Report, Camegie-Mellon University, 1983.
Intelligent Systems Laboratory,The Robotics Institute, Pittsburgh,PA.

[Wright 211 Sewall Wright.

[Wright 341 Sewall Wright.

[Wright & Fox 831 J.M. Wright, and M.S. Fox.

