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Abstract
In this article, we describe high-fidelity human be-
haviour emulation model capable of ranking and re-
ranking goals during plan execution based on chang-
ing emotional modes of an agent. Our model assumes
the agent is rational but its reasoning is bounded. The
agent’s reasoning process incorporates emotions and
basic human needs to emulate changes in human be-
haviour under cognitive limitations. The majority of
cognitive systems that incorporate emotions rely on re-
active models that elicit predetermined responses to
emotional modes. Our model demonstrates how hu-
man emotions change during the execution of a plan
independent of specific events that may elicit such re-
sponses. The initial goals of the agent are grounded
in basic human needs outlined by Maslow’s Hierar-
chy. Once a plan is generated under the cognitive lim-
itations of the agent and execution begins, goals are
re-ranked based on an emotional re-evaluation of the
plan’s progress. The result is a high-fidelity, domain-
independent, general theory of motivation based on hu-
man needs and emotions. We demonstrate the algorithm
with a use-case from the social service domain by em-
ulating the behaviour of homeless clients in response to
an intervention program.

Introduction
In this article, we show how emulation of human be-

haviour can be improved by extending artificial intelligence
(AI) planning methods with behaviour psychology theories
in novel ways. We describe a high-fidelity human behaviour
emulation model capable of ranking and re-ranking goals
based on changing emotional modes of an agent.

Unlike existing systems with specific goals defined a pri-
ori, our agent’s goals are grounded by abstract representa-
tions of basic human needs defined by Maslow’s Hierar-
chy (MH) (Maslow 1943). The hierarchy categorizes hu-
man needs into five levels: physiological (e.g. eat, sleep),
security (e.g. shelter, safety), social (e.g. family, commu-
nity), esteem (e.g. self-esteem, pride), and self-actualization
(e.g. be a good parent, rewarding job). According to MH
goals at lower levels must be satisfied before moving onto
goals at higher levels. Empirical evidence suggests that for
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some subpopulations the levels do not have a strict ordering
(Henwood et al. 2015). Rather, goals are reevaluated and re-
ranked in a matter more dynamic than assumed by the hierar-
chy. In recent work, a simplified version of MH has been in-
corporated into a cognitive architecture (CA) as a motivation
model for simulating artificial agents (Shi et al. 2013). Our
work relies on the complete version of MH used by social
scientists for modeling human motivation and behaviour.

Our work also extends goal ranking and the planning pro-
cess by incorporating human emotions. Most existing AI
systems and CAs rely on appraisal theory and arousal theory
to categorizes emotions and emotional responses to events
(Reisenzein et al. 2013; Lin, Spraragen, and Zyda 2012). In
such systems, emotional states like anger, fear and happi-
ness are associated with agent responses to events with ex-
plicit rules or probabilities. Our work takes a more general
approach by generalizing the effects of emotions by simu-
lating changes in emotional states as agents execute actions
in any plan towards their goals. The Emotional Cycle of
Change (ECOC) provides the psychological foundation for
changing behaviour due to emotions (Gajderowicz, Fox, and
Grüninger 2017b).

Finally, our model assumes the agent is rational but its
reasoning is bounded. A rational agent maximizes their
utility towards a goal, as defined by social science and
AI literature (Gratch and Marsella 2004; Russell 1997;
Zafirovski 2005). By bounds, we mean limitations defined
by the theory of bounded rationality (BR), mainly cognitive
limitations, missing information, and limited computation
time (Simon 1996). However, AI and social science disci-
plines take different views on how best to understand human
behaviour as rational or irrational within such limits. Our
work merges these views by extending the rational planning
reasoner STRIPS, with a plan utility function that incorpo-
rates MH and ECOC theories. The result is a high-fidelity,
domain-independent general theory of motivation based on
human needs and emotions.

To demonstrate the validity of our work, we summarize an
experiment that compares the goal ranking of our model to
the changing needs of homeless clients, a traditionally diffi-
cult population to plan client-centred services for (Henwood
et al. 2015). We use data from a real social service interven-
tion program called Housing First, administered by Calgary
Homeless Foundation (CHF) (http://calgaryhomeless.com).
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Background
Belief-desire-intention (BDI) is one of the most popular
models used to represent goal-driven agents. Within BDI,
desires represent the goals of an agent. Traditionally, goal
creation, ranking, and re-ranking is either provided a prior
or is calculated based on an agent’s beliefs and intentions
during the decision-making process. In this section, we de-
scribe how goals are ranked in existing AI planning and CA
systems, and the limitations in applying such systems to em-
ulation of human behaviour.

Basic Goal Ranking: Classical planning systems are
based on the STRIPS architecture that solve planning prob-
lems (Fikes, Hart, and Nilsson 1972). A STRIPS planning
problem has three main components: initial state of the
world, a set of goals that should be true, and the action
schema (AS) that provides actions that transition the world
from one state to another. Basic goal ranking has been based
on the order goals were initially specified in. Early on re-
searchers recognized that it was not always feasible to search
all possible plans to find the most optimal one (Simon 1996).
Like humans, computers are also bounded by missing in-
formation and computation time. To find optimal solutions
more efficiently, heuristic search was introduced. Heuristic
search relies on various methods for estimating the optimal
path and searching that path first. Most heuristic methods are
based on probabilities and estimated distances. For example,
the A* heuristic search calculates plan utility as shortest dis-
tance from start state to goal state (Hart, Nils, and Raphael
1968). Depending on the application, domain-specific prob-
lem characteristics could be used to prioritize goals and rank
plans. In scheduling, heuristics based on feasibility of com-
pleting a plan within certain time windows and availabil-
ity of resources saw great improvements in the efficiency of
finding a plan (Sadeh and Fox 1995). This research demon-
strated sizable improvements variable and value orderings
have in the efficiency of a search problem.

Goal Categorization: As problem definitions become
more abstract and search algorithms more sophisticated, it
is possible to categorize goals to improve search efficiency
further by excluding goal rankings known to be non-optimal
(Hendler, Tate, and Drummond 1990). In AI and social sci-
ences, the most fundamental goal categories are achievement
goals and maintenance goals (Norman and Long 1995).
Consider a typical application of AI agents; the planetary
exploration rover. A teleological rover will have various pre-
defined “achievement goals” provided a priori, such as per-
forming experiments and taking photographs. These gener-
ally embody why an AI agent was created in the first place.
To support achievement goals, “maintenance goals” must be
continuously monitored, including power management and
adaption to its terrain. Any required maintenance goals must
first be satisfied before achievement goals are pursued.

AI planners and CAs have successfully incorporated goal
categories to reduce search time. For example, Fikes et al.
provide an extension to STRIPS that creates MACROPs,
partial plans for specific goals (Fikes, Hart, and Nilsson
1972). Extensions to STRIPS like ABSTRIPS and NOAH
provide a hierarchical search spaces (Fox 1983). Here, spe-
cial “critical goals” represent highly ranked achievement

goals that must be included in the final plan. NOAH allows
for the creation of goal-pair ordering used to resolve con-
flicts during the search. CAs can organize goals and partial
plans in ways that mimic human memory management. For
example, Soar and ACT-R store already created partial plans
called “chunks” in memory for later use (Lin, Spraragen,
and Zyda 2012). The original ICARUS has a special group
of static “top-level goals” provided a priori, and can re-rank
sub-goals during execution, while an extension allows the
re-ranking of top-level goals as well (Choi 2010).

Goal Weights: Like people, machines must also reason
with bounded rationality. When relying on incomplete infor-
mation or insufficient resources, an assignment of weights
to goals is often required (Hendler, Tate, and Drummond
1990). Many classical planners have incorporated probabil-
ities, and detect changes in those probabilities during plan
execution, triggering a re-planning process when needed
(Blythe 1998; Little and Thiebaux 2007). Probabilistic plan-
ners like MAXPLAN extend work in operations research
specifically to focus on finding optimal solutions (Majer-
cik and Littman 1998). Systems like ACT-R assign utili-
ties to production rules to indicate their usefulness (Ander-
son et al. 2013). Capturing weights as “preferences” is es-
pecially helpful when ranking goals provided by humans.
Some planning algorithm incorporate constraints defined by
human subjects to resolve conflicting preferences (Brafman
and Chernyavsky 2005). In project requirements engineer-
ing, preferences are used to select most desired and realis-
tic requirements and create a work schedule that prioritizes
client needs (Liaskos et al. 2010).

Human Motivations and Behaviour: Once user prefer-
ences are captured, we can rely on algorithms to identify
conflicting or unreasonable beliefs. Humans have many such
beliefs, often leading to observed behaviour being catego-
rized as biased, emotional, or irrational (Zafirovski 2005).
Biased and irrational behaviour has been studied extensively
in social sciences (Kahneman 2003). This article focuses on
the emotional factors that influence goal ranking in AI plan-
ning and CAs. Majority of AI systems and CAs rely on ei-
ther arousal theory or appraisal theory to incorporate emo-
tions (Gratch and Marsella 2004; Lin, Spraragen, and Zyda
2012). Arousal theory is based on “drives” that motivate us
to perform certain activities associated with positive or nega-
tive valance (Gratch and Marsella 2004). In appraisal theory,
emotions act as categories for interpreting our perception of
the world (Lin, Spraragen, and Zyda 2012). Emotions con-
trol how internal relationships form between an agent’s be-
liefs, desires, and intentions.

Some systems associate emotional appraisal with events
using explicit rules (Lin, Spraragen, and Zyda 2012). These
include CAs like ALEC and MAMID, and AI Planners like
ACRES/WILL, ActAddAct and EM-ONE. The use of ap-
praisal theory is often supplemented with the cognition-
based emotion model of Ortony, Clore, & Collins (OCC).
OCC provides discrete emotions like fear, joy, and sadness
that are associated with events. Valance can be assigned to
emotions, with positive valance assigned to higher ranked
goals. CAs that use appraisal theory with OCC include Soar-
Emote and H-CogAff. AI planning systems include FA-



tiMA, EM, FLAME, Émile, and work by Gmytrasiewicz et
al (Lin, Spraragen, and Zyda 2012). The arousal approach
represents goal ranking as weighted drives that control emo-
tional responses to events. CAs that utilize arousal include
work by Ahn and a number of ACT-R extensions by Belkin
et al, Fum et al., and Cochran et al. (Lin, Spraragen, and
Zyda 2012). AI planners utilize arousal theory and weighted
drives to rate the utility of plans during the search process
(Gratch and Marsella 2004; Russell 1997).

Limitations of Existing Work: Unlike AI applications,
social science relies on theories like Maslow’s Hierarchy
that provide the source of human achievement goals and
their ranking along basic human needs (Maslow 1943).
However, key limitations exist for incorporating human-like
goal ranking and emotions in AI and cognitive systems.

First, most systems focus on creating and executing
plans in the most efficient way while minimizing or ig-
noring human limitations and bounded rationality (Kosinski
and Zaczek-Chrzanowska 2003; Edelman 2015). Second,
human-like cognitive impairments caused by faulty mem-
ory and cognitive biases are not easily captured (Hallion and
Ruscio 2011). Some research into simulating certain types of
impairments exists. For example, the Soar system’s episodic
memory was evaluated to investigate how well it could func-
tion as more uncertainty is introduced (Derbinsky, Li, and
Laird 2012) or different types of memory loss occur (Nux-
oll et al. 2010). However, it would be infeasible to generalize
such results to populations underrepresented in such studies.
Also, associating positive and negative valence with specific
actions ignores the complexity of human emotions, relying
on social norms rather than unique biases of individuals.
Hence, existing definitions of agent “drives” are too vague
and inflexible to represent human emotions (Kleinginna and
Kleinginna 1981).

Method
The methodology presented in this article begins with the
mapping of Maslow’s needs to domain specific goals for
an agent, as defined by (Gajderowicz, Fox, and Grüninger
2017a). Possible goals and actions are defined in the ac-
tion schema (AS), which is domain-specific. The initial goal
ranking is unique to the agent when the first plan is created.
Maslow’s hierarchy determines goal ranking during execu-
tion when plan utility is recalculated. AS defines actions for
reducing hunger, such as buying food or as in the homeless
domain, going to a soup kitchen.

Once plan execution begins, a combination of MH rank-
ing and ECOC stages is used to re-rank goals and change the
utility of a plan. According to the ECOC theory, while indi-
viduals execute a plan, their emotions change in a way that
is not directly related to their performance or a linear utility
function. In our model, ECOC controls how an agent’s emo-
tions impact their perception of success, and how that per-
ception controls action selection and goal re-ranking during
re-planning (Gajderowicz, Fox, and Grüninger 2017b).

How do AI systems and CAs address human bounded ra-
tionality? Economists and AI practitioner focus on under-
standing the internal processes of decision-making, which
we call the “reasoning view”: an objective understanding
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Figure 1: Action a with preconditions (prai ) and postcondi-
tions (poaj ).

of choices (Etzioni 1988; Russell 1997). Within psychol-
ogy and sociology, rationality is a reference point, and re-
searchers focus on interpreting observed behaviour, which
we call the “behavioural view”: a subjective understanding
of choices (Simon 1996; Etzioni 1988). This section dis-
cusses how these two views can be merged to provide a more
general theory of motivation based on the relationship be-
tween Maslow’s Hierarchy, emotions, and decision making.

Human Behaviour as a Planning Problem
A STRIPS problem definition used in our work initializes
the state of the world (init(Sinit)) and the agent’s goals
(goals(G)) based on circumstances and goals expressed by
an actual homeless client in the CHF dataset. Due to BR, the
agent needs to re-rank goals and accommodate unplanned
consequences of actions. AS contains domain specific ac-
tions. Each action a has preconditions (pra) that must be true
before executing a and postconditions (poa) that are true af-
ter execution, as per Figure 1. A state is explicitly defined
as true by the statement true(state). A state is explicitly
defined as false by the statement not(state). An action con-
trols postconditions by either adding or deleting such states.

The STRIPS planning algorithm searches for a sequence
of actions that change the initial state of the world from Sinit

to ∆S where G ⊆ ∆S. The planning algorithm traverses
a search tree of all possible states in the world. Nodes of
the tree represent states, while edges represent actions that
change one state to another.

According to BR, the search process traverses the search
tree within BR bounds, defined as BR(I, C, T ). The infor-
mation bound (I) causes certain branches in the search tree
to be pruned prematurely as they do not match known in-
formation, where I ∈ (0, 100) indicating percentage of in-
formation known. The cognitive bound (C) limits the com-
plexity of reasoning a STRIPS planner can perform. In our
model, C is the depth of tree traversal possible, where C ∈
R (R = real numbers). Visited branches past a certain depth
are pruned and not visited during the search. Finally, the time
bound (T ) limits the number of nodes the algorithm visits
while traversing the search tree, where T ∈ R.

Plan Utility: Once a plan P is generated, the plan’s utility
UP is calculated. UP is based on the utilities of actions Ua in
P , incorporating their contribution towards the agent’s goals
and changes in ECOC stages. To calculate UP , each action’s
utility is first calculated. For an action a, each precondition
has a weight (prai ) where prai = 1 if prai ⊆ S and 0 other-
wise, and prai ∈ pra. Each postcondition has a weight (poaj )
where poai = 1 if poai ⊆ G and 0 otherwise, and poaj ∈ poa.

A special action weight (powa
j (mh)) considers an action’s

postconditions that satisfy an outstanding goal for a particu-



lar MH level mh, as per Equation 1. This equation captures
two characteristics of the relationship between MH levels.
First, lower MH level goals are ranked higher than higher
level goals, with physiological being highest ranked and
self-actualization the lowest. Second, differences between
levels are exponentially larger as one moves up the hierar-
chy from physiological to self-actualization.

powa
j (mh) = 1−

(
pomh

j −min(MH)
)1/e

(1)

Interim actions are ones that satisfy subgoals rather than
MH goals directly. Interim actions are considered costs and
have a constant negative weight of powa

j (int) = −0.01.
Each action also has an expectation of success associated

with it based on previously satisfied goals at the same MH
level or other interim actions. Rather than using a simple ra-
tio of completed goals (GS) to total goals (|G|), the ratio is
adjusted using the function ECOC in Equation 2. It approxi-
mates the ECOC graph described in (Gajderowicz, Fox, and
Grüninger 2017a). Note that according to the ECOC theory
an agent that starts with zero achieved goals has a non-zero
expectation of success. According to Equation 2 the esti-
mated value is ecoc(0) = 0.75.

ecoc(X) =

0.6− sin(8x− 1) + cos(8x)

x− 2
, ifX ≤ 0.8 ;

X, otherwise .
(2)

Each of the action weights described are then combined
to calculate the utility of an action using its MH and interim
goal weights, with Ua

mh defined by Equation 3 and Ua
int de-

fined by Equation 4.

Ua
mh = min(prai )×

∑
j

(
poaj × powa

j (mh)
)

|poa| × ecoc

(
|GS

mh|
|Gmh|

)
(3)

Ua
int = min(prai )×

∑
j

(
poaj × powa

j (int)
)

|poa| × ecoc

(
|GS

int|
Gint

)
(4)

There is one factor that has not been captured yet: the con-
tribution an interim action makes towards satisfying an MH
goal. Until now, only Ua

mh have taken MH goals into account
through postconditions, while Ua

int have no direct connec-
tions to MH goals. To rectify this, a final weight (awa

j ) mea-
sures an action’s overall contribution to a particular MH goal
state in a plan. Each MH goal has a sub-plan Pmh required
to satisfy that goal from initial state s0 to goal state sgmh.
We define the distance between states si and sj in a plan
with dist(si, sj). To calculate an action’s contribution to
Pmh, the action’s distance from s0 relative to dist(s0, sgmh)

is calculated, as per Equation 5. Here, sk is a state resulting
from postconditions for action a that contribute to satisfying
goals in sub-plan Pmh. Equation 6 combines Ua and all awa

k
weights for action a to calculate its utility (Ua

P ) for plan P .

awa
k =

dist(s0, sk)

dist(s0mh, s
g
mh)

(5)

Table 1: Search Strategies
Strategy Description
none Select first plan found.
noneswap Perform pairwise swapping of ac-

tions on first plan; choose plan with
max UP .

planutil Search all plans; choose plan with
max UP .

planutil-
swap

Search all plans; select plan with
max UP ; perform pairwise swap-
ping of ac-tions; choose plan with
max UP .

Ua
P = Ua ×

∑
k

awa
k (6)

Finally, plan utility UP can be calculated, as per Equation
7. An agent now has the ability to select a plan based on its
utility. How the plan is chosen is based on one of the four
search strategies in Table 1.

UP =

∑
a

Ua
P

|P | (7)

Re-planning: Once plan P is generated and selected, the
agent begins its execution. After the next available action
is executed, UP is recalculated. There are two main differ-
ences between the original UP and UP after execution. First,
at least one goal has been achieved, and the expectation of
success with ecoc() is recalculated. Second, if a plan’s util-
ity falls below an “emotional threshold” execution stops, and
certain goals are deferred until later. The re-planning process
then begins. Re-planning is controlled by two thresholds that
capture how an agent responds to the UP during execution
that were not considered during plan creation.

ecocTh is the threshold that represents an emotional limit
an agent can handle before pausing and reevaluating their
plan. If UP < ecocTh, plan execution halts and the plan’s
actions are considered for removal. actionTh is the thresh-
old that controls what actions are removed after a plan is
halted. If Ua < actionTh, the action is removed along with
any goals the action satisfies. Using the remaining goals,
a new plan is created and execution begins again. Once a
plan is successfully completed, meaning UP > ecocTh and
all goals are satisfied, previously removed goals are added
back, and a new plan is generated to achieve these outstand-
ing goals. The cycle continues until all goals are satisfied.

If UP < ecocTh but either no goals can be removed or
all goals are removed, a new plan is created and executed
without considering ecocTh. This is called a “forced” plan.
Any goals satisfied by a “forced” plan accumulate up to three
times in the final goal count. If a “forced” plan cannot sat-
isfy its goals it becomes a “failed” plan. Goals of a “failed”
plan persist until the end of the simulation. After a “forced”
or a “failed” plan, a new plan is created for the remaining
goals. The new plan’s Sinit is the state that existed the last
time UP > echoTh. The cycle continues until all goals are
satisfied or the last plan fails.



Table 2: Dependent Variables
Variable Description
∆Gact Actual goal ranking, grouped by 3-month

periods.
∆Gsim Simulated goal ranking, grouped by re-

planning cycles.
errtraj Trajectory Error: ∆Gact versus ∆Gsim.
learnrate Learning Rate: required by agent to com-

plete or fail plan.

Table 3: Environment Model
Variable Description Source
Services Services satisfying MH goals. AS
Actions Actions satisfying any goals. AS

Experiment: Homeless Client Emulation
The objective of this experiment is to find a model with
a goal ranking and emotional thresholds that emulate how
goals of homeless clients are re-ranked (∆G) while partic-
ipating in the Housing First program administered by CHF.
Our hypothesis is that the use of MH needs and ECOC stages
emulate client trajectory of changes in goals better than re-
lying on STRIPS alone. A standard STRIPS planner with a
breadth-first forward search is used to create a plan P that
satisfies an agent’s goals G. The details of the experiment are
given in (Gajderowicz, Fox, and Grüninger 2017a). Here, we
summarize the metrics used and the results.

The score (scoreM ) for rating a model is the error be-
tween the final simulated goal ranking ∆Gsim and actual
ranking ∆Gact for a participant in the CHF trial. A smaller
score indicates a smaller error and a better model, where
scoreM ∈ (0, 1). scoreM is the mean of errtraj , calculated
as the mean square difference between ∆Gact and ∆Gsim

goal ranking, and learnrate, the ratio representing a simu-
lated agent’s ability to go through the ECOC stages relative
to the actual CHF client’s ability.

Experiment dependent variables are defined in Table 2.
The environment and agent behaviour model variables are
defined in Tables 3 and 4.

By executing tests for all combinations of search strate-
gies SearchS , goal rankings MH and MHR, and values
for ecocTh and actionTh defined in Table 4, we have a to-
tal of 240 tests. The scoreM values for a subset of tests is
shown in Figure 2. Here scoreM is calculated for all combi-
nations of ecocTh and actionTh values in combination with
MHR goal ranking and “planutilswap” search strategy.

Analysis: The complete analysis is provided in
(Gajderowicz, Fox, and Grüninger 2017a). Here we
briefly discuss how to interpret the results and evaluate our
hypothesis. For scoreM values for the subset of tests in
Figure 2, we see that ecocTh ≥ 0.1 and actionTh = 0.3
produce the best model to emulate the actual CHF par-
ticipant. By com-par-ing the results for all 240 model
configuration combinations (not shown here), we can
perform similar analysis and see which agent configuration
is best. scoreM = 0.093 in Figure 2 was the lowest scoreM

Table 4: Agent Behaviour Model
Variable Description Value/Source
BR(I, C, T ) Bounded rationality I=100%,

C=40, T=2000
SO Search operator Forward
ecoc() Expectation function Equation 2
ecocTh ECOC threshold 0.0− 0.6
actionTh Action threshold 0.0− 0.5
MHG Goals mapped to

MH.
AS

goals(G) Initial MH goal rank-
ing (MH reversed).

MH (MHR)

init(S) Initial state (S) of
world.

CHF data

searchS Search strategy used. none,
noneswap,
planutil, planu-
tilswap

Model Score

Figure 2: Model score (scoreM ) for tests using MHR goal
ranking and “planutilswap” strategy.

across all 240 tests. The “planutil” search strategy with the
same goal ranking and thresholds produce the same score.

Hypothesis: Based on these results, we confirm our hy-
pothesis that relying on both MH goal ranking and ECOC
produces a better emulation of a person’s behaviour than
without. The best models were those that did not ignore
ECOC thresholds, where ecocTh > 0 and actionTh > 0.
Also, MHR goal ranking produced better models than MH
for “planutil” and “planutilswap” search strategies.

Rational Behaviour: Since individuals cannot help but
act on their emotions, any “unusual” behaviour in response
to ECOC stages is not necessarily irrational. Also, as ob-
served by (Henwood et al. 2015), goal ranking that differs
from MH is not necessarily irrational. The preferred MHR

of the emulated agent may simply reflect their priorities at
the time. The best indication of rationality is the search strat-
egy. As per Table 1, we say that the “none” strategy is the
least rational and “planutilswap” the most. The model that
best emulated the CHF participant uses the “planutil” and
“planutilswap” strategies, hence the agent is rational.

Conclusion
In this article, we presented a general model of human mo-
tivation and goal ranking. This model relies on abstract hu-



man needs and a novel way of incorporating emotions in an
AI planner. Our model is of high-fidelity due to two key con-
tributions: 1) low level abstraction of initial agent goals that
replace traditionally predetermined goals; 2) model’s inde-
pendence from predefined emotional responses. The model
demonstrated that clients act rationally but rank their goals
in what may be perceived as unusual, but not irrational. The
homeless client domain offers unique challenges that may
not exist outside of this domain. The high-fidelity and gener-
ality of our model may benefit analysis of other populations
that are also difficult to study.
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