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Abstract
In classical AI planning, replanning strategies are used to reevaluate a plan during execution. For
human-like agents, goal preferences and emotions play an important role in evaluating a plan’s
progress. However, most existing systems rely on predefined goal ordering and a static association
between an event and its emotion-based utility calculation. During execution, utility of individual
actions are used to trigger the replanning process. This approach assumes that a complete sequence
of actions can be generated, preferences are known, are transitive, the mood-based utility of every
action’s outcome is known, and a replanning condition is well defined. This paper presents an
alternative approach, one that does not make assumptions about the agent’s or observer’s omni-
science about factors influencing decision making. Our approach recognizes the bounds that limit
the agent and observer equally. To accommodate these limits, first, human-centric goal ranking are
grounded in a domain-specific mapping to Maslow’s hierarchy. Second, a new replanning condition
is proposed with dynamically changing mood-based utility during plan execution.

1. Introduction

The objective of our work is to reproduce behavior of individuals who interact with social service
programs for the purpose of evaluating such programs. Towards this end, the framework proposed
here strives to reproduce behavior exhibited by social service clients as captured by data about
them. This paper proposes a human-centric replanning condition based on basic human needs and
a mood-based evaluation of a plan by a human-like agent. In traditional economic theory, the
agent is assumed to be rational during the planning phase, relying on optimal goal preferences for a
given task and the neoclassical utility function that increases expectation of success at each time step
(Camerer & Lovallo, 1999; Marnet, 2005). However, due to bounded rationality, a human-like agent
would not able to consider all information required to make globally optimal choices that maximize
utility (Simon, 1955). Instead, the chosen plan is an approximation of a potentially executable
plan. During plan execution, the deviation of the executed plan from the chosen plan takes a toll
on the agent (Camerer et al., 2004; Kensinger & Schacter, 2008; Marnet, 2005). Depending on the
resilience of the agent, a sufficiently pessimistic evaluation of the executed plan triggers a replanning
process. In our framework, rather than relying on a static assignment of valence for each action and
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outcome state a priori that impacts mood, valence is assigned dynamically during execution and
creates a dynamic mood-based replanning trigger.

This paper extends the BRAMA framework, described elsewhere (Gajderowicz et al., 2017a)
and summarized in the next section, that reproduces decisions of cognitively bounded and seemingly
“irrational” agents, focusing on the homeless population. The main contributions of this paper are:

• the extension of expected utility function by incorporating Maslow’s (1943) hierarchy (MH) for
ranking goals;
• the extension of expected utility function for a dynamic mood theory called the Emotional Cycle

of Change (ECOC)1 (Kelley & Connor, 1979);
• a replanning condition based on pessimistic and optimistic moods of the agent; and
• a simulation environment in which the agent executes and revises its plans.

Section 2 introduces the BRAMA framework. Section 3 describes our approach to bounded plan
generation and human-like goal ranking, while Section 4 explains how BRAMA incorporates ex-
pected utility functions and Section 5 presents the replanning process. We finish with related work
and concluding remarks in Sections 6 and 7.

2. Review of the BRAMA Framework

The Bounded Rational Agent MotivAtions framework (BRAMA) supports the construction of
bounded agent models and simulates their interactions with the environment (Gajderowicz et al.,
2017b). A BRAMA agent mimics the human decision making and reasoning processes such that
its execution within a simulation replicates how the person being modeled would make decisions.
Our objective is to replicate behavior of homeless clients captured by data as they interact with ser-
vice providers while participating in an intervention program. The simulation environment controls
plan generation, execution, and monitoring to reproduce the effects dynamic and constrained social
services have on the client’s replanning.

The core theoretical tenets of this work are based on ideas from artificial intelligence (AI), eco-
nomics, sociology, and psychology to reproduce behavior of human-like agents (Gajderowicz et al.,
2017a). Economists and AI practitioners focus on understanding the internal processes of decision
making, which we call the “reasoning view”: an objective understanding of choices (Etzioni, 1988;
Russell, 1997). Within psychology and sociology, rationality is a reference point and researchers
focus on interpreting observed behavior, which we call the “behavioral view”: a subjective under-
standing of choices (Simon, 1996; Etzioni, 1988). This division has been characterized as being
between the subjective rationality of an emotional agent and the objective rationality of an observer
(Zafirovski, 2005). The objective of our work is to reproduce seemingly “irrational” behavior using
a rational reasoner by combining these two views.

In BRAMA, the two views are split between two phases of behavior, planning and execution.
During the planning phase, the agent is assumed to be rational in the neoclassical sense, to know

1. Kelley and Connor (1979) described an agent’s “mood” as being optimistic or pessimistic but used “emotion” for
the overall theory. The ECOC function used here is a modified version the first author observed while working at a
homeless shelter for this research, as described in (Gajderowicz et al., 2017b). It was used to help clients participating
in a program recognize as their own optimistic and pessimistic moods.
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required information, be nonemotional, and plan its actions based on its own preferred ranking
of goals. During the execution phase, however, the agent must adjust to the real and unforeseen
consequences of its actions. The responses may be expected and included in the original plan or
unexpected, causing the executed plan to deviate from the original plan.

The target domains for a BRAMA agent model are those for which the motivations and means of
individual agents are not well understood. This paper targets social service clients, specifically the
homeless population. To replicate true homeless clients, the agent model configurations are based
on a data set provided by the Calgary Homeless Foundation2 (CHF) that contains information about
clients as they participated in a “Housing First” (HF) intervention program administered by CHF.
The CHF-HF data set contains information on approximately 4,000 unique clients who participated
in the HF program in Calgary, Canada from 2009 to 2015. Gajderowicz et al. (2018b) provide a
complete description of the data and analysis. Participants were surveyed at program intake with
follow-up interviews every three months until exiting the program. Amongst other information, the
questionnaire captured client demographics and requests for goods and services. The 763 different
types of requests provided by clients were combined into 58 different need categories.

To provide a more objective ranking of goals and calculate utility, BRAMA relies on domain-
specific mappings of agent goals to levels of Maslow’s (1943) hierarchy that grounds the rankings
in basic human needs. There is some consensus among researchers that behavior models can rely on
theories like Maslow’s Hierarchy (MH), given appropriate adjustments for specific domains (Ken-
rick et al., 2010; Sumerlin, 1995; Henwood et al., 2015). This hierarchy categorizes goals into five
levels of short-term and long-term needs. BRAMA utilizes homeless-specific mapping described by
Gajderowicz et al. (2018b) to link requests reported in the CHF-HF data set to one or more levels of
the hierarchy. The Ontology of Social Service Needs was developed to map each need category to
an MH level based on goal definitions and 15 key client demographics (Gajderowicz et al., 2018a).

Emotions also play an important part in calculating expected utility. Many existing models
assume that emotions can be assigned statically to all observed situations, and that such assignments
are known a priori (Lin et al., 2012; Steunebrink et al., 2007). However, an agent will respond
differently to similar situations depending on its mood. Such dynamism is not captured by existing
models of emotion-based utility functions due to statically assigned emotions for specific events and
scenarios. BRAMA relies on the Emotional Cycle of Change (ECOC) theory (Kelley & Connor,
1979), as adopted by the social service domain and described by Gajderowicz et al. (2017b). ECOC
recognizes that, in response to the same event or scenario, behavior changes according to stages
of pessimism and optimism. In BRAMA, a replanning condition is triggered when the agent’s
pessimism threshold is reached. Once triggered, goals are reranked and a new plan is generated.

3. Human-Centric AI Planning
As discussed in Section 2, BRAMA adopts two perspectives of rationality, the presumed “rational
view” and the observed “behavioral view”, which considers environmental and internal constraints
that may not be known. This section introduces a bounded agent’s representation of goals and
actions for generating plans, and how goal ranking is incorporated to calculate utility.

2. The Calgary Homeless Foundation: http://calgaryhomeless.com/.
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3.1 Bounded Plan Generation

According to Simon (1955), bounded rationality limits our ability to be completely rational when
making decisions. The BRAMA planner, STRIPS-BR, uses a STRIPS-style planner (Fikes & Nils-
son, 1971) that selects one goal at a time, selects actions that satisfy it, or generates subgoals and
required actions if the action’s preconditions are not satisfied. Planners that use this type of heuris-
tic, guided by preconditions to reduce the difference between the current state and the goal state, are
said to perform means-ends analysis. In STRIPS-BR, three bounds limit the creation of a search tree
(Gajderowicz et al., 2017a). The time bound BR(T ) limits the number of states that can be visited
during the planning phase while creating the search tree. Cognitive limitation set by BR(C) limits
the depth of a search tree that can be evaluated. A third factor, BR(I) = {SBR,t, Gt, ASBR} as
described below, impacts how goals are stored and reranked in memory during planning by limiting
the amount of correct information an agent can store in memory, and is discussed here in detail.

In bounded AI planning, the knowledge bound limits the agent’s creation of its search tree to
only include those states of the world the agent knows about (SBR,t) at time step t, an action schema
of known actions and their characteristics (ASBR), and what goals an agent has (Gt) at time step t.
As the plan is generated, interim goals are included to satisfy preconditions of actions in the plan.
The final search tree is made up of branches representing a set of possible plans (P x) from which
the agent can select.

St provides grounded facts that are known to be true at time step t. SBR,t are states the agent
believes are true at time step t. G are basic achievement goals an agent wants to be true and are
mapped to an MH level. GI are interim goals an agent wants to be true that are not mapped to an
MH level but identified as maintenance goals during the planning phase to satisfy preconditions of
actions that satisfy existing unsatisfied goals. Three other important terms are

GU
t ⊆ G ∪GI , where ∅ = GU

t ∩ SBR,t (1)
GS

t ⊆ G ∪GI , where GS
t ⊆ St (2)

GU+S
t = GU

t ∪GS
t , where G ⊆ GU+S

t (3)

where GU
t is a set of unsatisfied goals at time step t, as per Equation 1, the goal set GS

t is a set of
satisfied goals at time step t, as per Equation 2, and the goal set GU+S

t is a set of all goals for an
agent at time step t, as per Equation 3.

An agent’s bounded memory to store knowledge in BR(I) limits the number of goals, states,
and actions the client can retain at any one time. The actions an agent can use to create a search
tree are stored in the bounded action schema ASBR. Each action a in ASBR is defined along with
its preconditions (PRE) and postconditions (POST ). PRE are states that must be true before a
is executed while POST are actions that must be true after a is executed. Some action definitions
in ASBR are correct, while other definitions may be incorrect. Incorrectly defined actions in ASBR

are referred to as incorrect actions with partially defined preconditions and postconditions, as per
Equation 5. The set of incorrect actions is ASinc, while the set of correct actions is AScor. The
union of these actions make up the set AS of all possible actions, as defined in

AS = AScor ∪ASinc , (4)
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where ∅ = AScor ∩ASinc. The function inc(a) transforms a correct action a to an incorrect action
a∗, as in

a∗ = inc(a) , where (PRE 6= PRE∗) or (POST 6= POST ∗) , (5)

where the inverse inc−() converts an incorrect action to its correct equivalent. The agent’s knowl-
edge about actions then is defined as ASBR, where

ASBR ⊆ AScor ∪ASinc . (6)

States at time step t that are true before an action is executed are defined as si ∈ St, while states
true after execution at time step t+1 are defined as sj ∈ St+1. Finally, the agent’s reasoner relies on
actions available in ASBR to satisfy goals in GU , given what the client knows about the world in
SBR. The final bounded knowledge the agent uses is BR(I).

3.2 Human-Centric Goal Ranking

Human-centric goal ranking is based on ranking of concrete goals mapped to basic needs as identi-
fied by Maslow’s hierarchy. As discussed in Section 2, while this preference may not be used in the
planning phase, it is assumed to be true during the plan execution phase. Goal utility is based on
two types of preferences, nominal goal ranking and cardinal goal ranking (Wold et al., 1952).

Nominal goal ranking identifies the order in which goals are preferred, whether by the agent or
based on an MH level. Agent preferred ranking is represented by the �A relation, where si �A

sj indicates the agent (A) prefers goal si over sj . MH goal ranking relies on MH levels where
each level has a different rank. For example, the original hierarchy ranks any goals mapped to the
physiological level the highest, while goals mapped to the self-actualization level are ranked the
lowest. Hence, MH is captured by the ordering relation �mh, where

physiological �mh security �mh social �mh esteem �mh self -actualization . (7)

The rank(pref, si) function returns the numerical rank for goal si according to its nominal map-
ping, as in

rank(pref, si) < rank(pref, sj) ⇐⇒ si �pref sj where pref ∈ [MH,A] . (8)

For an agent’s preferred ordering, rank(A, si) returns the index the agent assigned to the goal si,
where rank(A, si) ∈ {1, 2, . . . , n} for n goals in G. For Maslow’s hierarchy where pref=MH ,
rank(MH, si) ∈ {1, 2, 3, 4, 5} for each of the five MH levels and n=5. For example, the goal for
food is mapped to the physiological MH level, where si=food and rank(MH, si)=1. The goal for
having friends is mapped to the social MH level, where sj=friends and rank(MH, sj)=3. If a goal
is mapped to two different levels, it is represented by two separate goals at different MH levels. For
example, receiving “addiction support” generates two separate goals, say sm for the physiological
level and sn for the self-actualization level, resulting in rank(MH, sm)=1 and rank(MH, sn)=5.
Once all goals in G are mapped, the appropriate goal ordering can be applied. For a complete
discussion on goal mapping see Gajderowicz et al. (2018a).
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Cardinal goal ranking indicates a degree of importance in relation to other goals. The nominal
ranking rank(pref, si) is used to calculate whether there are preferred goals that should be satisfied
before si. For example, assuming that the physiological goal is most important, and some physio-
logical goal sj is still outstanding, any unsatisfied goal si mapped to higher MH-levels should have
a lower utility. The degree to which the utility of si is lower is relative to its distance from the
unsatisfied and higher ranked physiological level of goal sj , as defined in

min(GU ) = rank(pref, si), where for all sj ∈ GU , rank(pref, si) ≤ rank(pref, sj) (9)

and

u(pref, si) = 1−
(
rank(pref, si)−min(GU )

n− 1

)1/e

. (10)

To calculate cardinal utility for pref=MH , BRAMA relies on the MH level of goal si in relation
to the lowest outstanding MH-level goal. For pref=A, BRAMA relies on the index of goal si in
relation to the index of the lowest goal outstanding. First, the function min(GU ) defined in Equation
9 returns the minimum rank(pref, si) from outstanding goals. Second, u(pref, si) defined in
Equation 10 returns the cardinal utility of the goal si. Here, the difference between rank(pref, si)
and min(GU

t ) is divided by four and taken to the power of 1/e. This reflects logarithmic declining
utility of goals at higher levels of the hierarchy,

u(pref, si) ≥ u(pref, sj) ⇐⇒ si �pref sj , (11)

as originally observed by Bernoulli about a declining marginal utility, and adopted by economists
like von Neumann (1944), Savage (2012), and others. The resulting u(pref, si) function is a car-
dinal ranking for one goal relative to another that allows us to compare goal preferences using goal
utility. Suppose si and sj are goals in a set ordered by�pref , then Equation 11 defines their relation
based on their utilities.

4. Expected Utility Functions for Bounded Agents

In subjective expected utility, an action’s utility represents the probability that an action will suc-
cessfully satisfy the intended goals (Savage, 2012; Jeffrey, 1990). Unless probabilities are known a
priori, a bounded agent must infer them from its perception of success. In this section we introduce
two approaches, first based on neoclassical expected utility and another on the changing mood of
the agent using ECOC.

4.1 Relative Expected Utility of Actions

The calculation of an action’s expected utility is based on the probability of successfully achieving
a goal that action satisfies. Since goals closer to the current time step have higher probability of
success their weight is relative to the action’s position in the plan. Also, it is possible that one action
can satisfy goals at different time steps of a plan. This scenario occurs when alternative actions exist
in the same plan, at different time steps. For example, imagine a homeless shelter offers takeaway
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meals, where the agent receives a hot meal and sandwiches. Both require the precondition the agent
is at the shelter, and both satisfy the same physiological need for food. The agent is free to eat the
hot meal first and sandwiches later in the day, and vice versa. This type of scenario is possible when
alternative actions have overlapping postconditions and preconditions for some plan P x.

Generally speaking, if an action axt originally at time step t in plan P x can be executed at other
time steps k, the action’s utility increases. For each basic goal sxi , there is a subplan P x

t (s
x
i ) of

actions required to satisfy goal sxi from the plan’s initial state Sp. First, to calculate the distance
between arbitrary goals sxi and sxj in Plan P x,

dist(sxi , s
x
j ) = j − i (12)

returns the number of actions required to transition from goal sxi to state sxj . Second, the weight

awx
k = 1−

dist(sxt , s
x
k)

dist(Sp, sxi )
(13)

relies on this distance to calculate the contribution action axk makes to plan P x, starting with the
plan’s initial state Sp to when goal sxi is true. A higher weight awx

k means action axk is closer to the
target goal sxi in sequence x, and contributes more. Finally, action utility that captures all time steps
action axt can be executed in is calculated as the product of mean goal utility for goals satisfied by
axk and awx

k in

u(pref, axt ) =

∑
i
u(pref, postxt,i)

|POST x
t |

×
∑
k

awx
k . (14)

The mean goal utility considers utility in Equation 11 for all postcondition states that satisfy unsat-
isfied goals, where for each postxt,i ∈ GU ∩ POST x

t . For each time step k, the mean is multiplied
by the action’s weight awx

k to produce the action’s utility u(pref, axt ).

4.2 Neoclassical and Mood-Based Expected Utility for Actions

As mentioned in Section 1, according to neoclassical theories of utility, the rational expectation of
success is always increasing, assumed to be improving from one action to another. While different
methods capture this type of “improving” pattern, we normalize all neoclassical theories by settling
on the “expected value” function

exp(t) =
|GS

t |
|GU+S |

. (15)

This expected utility is a simple ratio of satisfied goals (GS) to all goals (GU+S), as depicted in
Figure 1 (a). The final neoclassical utility for action axt in plan P x at time step t is

uexp(pref, a
x
t ) = u(pref, axt )× exp(t) , (16)
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Figure 1. Neoclassical expected utility at time step t using (a) function exp(t) and (b) average action utility
uexp(A, a

x
t ) for action a in plan P x.

where for each postxt,i ∈ GU ∩ POST x
t . It is a product of exp(t) and postcondition states that

satisfy unsatisfied goals, as depicted in Figure 1 (b).
A key limitation of the exp(t) method and its increasingly monotonic characteristic is that it

does not reflect how people’s expectations actually change over time (Campbell, 2006; Raiffa,
1961). Time itself is a factor, where our perception of risk, preferences, reward, or available in-
formation changes over time in a way that not always increases action utility. Instead, people go
through optimistic and pessimistic stages that influences how they perceive expected utility of their
choices (Kelley & Connor, 1979; Gajderowicz et al., 2017a). Recall from Section 2 that according
to the ECOC theory, as individuals begin a task, they are overly optimistic about success, become
pessimistic once true efforts becomes apparent, and again become optimistic if sufficient gains to-
wards completing these tasks are made. We can describe these stages in terms of gains and losses
of probability of success. During the initial optimistic stages, the probability of success is high
without any evidence to justify the optimism. During the pessimism stage, probability of success
falls when constraints become apparent. Finally, if constraints are removed, ECOC resembles the
exp(t) function where the probability of success again rises based on new evidence.

The ecoc(x) utility function in Equation 17 produces the non-monotonic graph in Figure 2 (a),
approximating the ECOC graph. The function ecoc(x) takes exp(t) as its only parameter. The
result is an adjusted expectation of success according to the ECOC theory:

ecoc(x) =

0.6− sin(8x− 1) + cos(8x)

x− 2
, if x ≤ 0.8 ;

x, otherwise .
(17)

uecoc(pref, a
x
t ) = u(pref, axt )× ecoc(exp(t)) (18)

The final mood-based utility of action axt takes exp(t) as a parameter passed to ecoc(x) as x, mul-
tiplied by goal utility assigned to the action’s postconditions, as defined in Equation 18.

4.3 Plan Utility for Planning and Execution

The utility of plan P x combines the contribution of each action towards goals being satisfied. Dur-
ing the planning phase, the agent assumes it is objective and rational in the neoclassical sense. It
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Figure 2. ECOC expected utility at time step t using (a) an approximation of the ECOC function ecoc(x) and
(b) average action utility uecoc(MH,axt ) for action a in plan P x.

assumes no biases are used to evaluate plans in the search tree it created. Hence, during the plan-
ning phase the agent relies on exp(t) to calculate plan utility. It also uses a custom goal preference
ordering �A for achievement goals mapped to MH needs, relying on rank(A, si) for goal ranking.

Neoclassical plan utility combines goal and action utility as the mean utility of all actions in the
plan up to time step t, as in

Uexp(pref, P
x
t ) =

∑
k

uexp(pref, a
x
k)

|P x
t |

, (19)

and illustrated in Figure 3 (a). The plan with the highest utility for the entire plan is selected by the
agent for execution, as discussed in the next section.

During the execution phase, realistic consequences of planned actions become apparent. First,
the agent’s preferred order of basic needs is not used. Rather, MH ranking according to domain-
specific mapping to MH levels is used, as defined in the ordering Equation 7. This ensures that,
regardless of the order the agent preferred during planning, true preferences during plan execution
are represented by Maslow’s order. Second, if the agent was too optimistic during planning, it
will not improve its utility after each action, as implied by the neoclassical theory. Instead, ECOC
is used to capture a pessimistic evaluation of the agent’s planned actions in response to the true
consequences of its executed actions.

If the agent was too optimistic during planning, action utility is calculated using uecoc(MH,axt ),
as defined in Equation 18. As illustrated in Figure 2 (b), the trend of action utility is influenced by
the ECOC graph in Figure 2 (a) and discussed in Section 4.2. The initially high utility represents an
optimistic evaluation of actions. As the plan is executed, the evaluation is more pessimistic resulting
in a lower utility. Over time, the plan’s utility again rises.

Finally, plan utility combines ECOC-based goal and action utility as the mean utility of all
actions in the plan up to time step t, as in

Uecoc(pref, P
x
t ) =

∑
k

uecoc(pref, a
x
k)

|P x
t |

, (20)

and illustrated in Figure 3b. Unlike the planning phase, plan utility is not used to select the best
plan. Rather, it is used to trigger the replanning process, as discussed in the next section.
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Figure 3. Average plan utility as goals in GU are being satisfied in plan P x using (a) neoclassical function
Uexp(A,P

x
t ) and (b) ECOC function uecoc(MH,P x

t ).

5. Human-Centric Replanning Phase

An important part of replicating a bounded agent’s plan generation and monitoring is the environ-
ment that forces the agent to reevaluate its plan during plan execution. This section introduces the
simulation environment that controls these tasks. As an agent’s plan is executed, plan monitoring
evaluates the “true” plan utility. A substantial difference between the planned and “true” utili-
ties triggers the replanning process. BRAMA incorporates a discrete-event simulation, a popular
simulation architecture for bounded agents in social sciences (Harpring et al., 2014). In such a sim-
ulation, the execution of complex systems is represented as an ordered sequence of events. Using
forward chaining, an action is executed as a discrete event at time step t, rather than continuously
over time. The actual time taken between each event may vary in length.

In BRAMA, each executed plan, whether partially or completely, represents a cycle in the life
of the agent. For a “homeless” agent, the cycle may be a 24-hour period in which it must carry out
tasks to satisfy as many goals as it can. The goals satisfied by the executed portion of a plan are not
included in plan generation during future cycles. The agent is assumed to have mastered these tasks
and can execute them without planning. While this plan-reuse resembles case-based approaches,
portions of plans are not reasoned about explicitly, as in case-based planning architectures (Lee
et al., 2008). Once a partially executed plan is complete, the current cycle ends. At the beginning of
the next cycle, the agent retrieves deferred goals and generates a new plan. The time between cycles
is also domain or situation specific. For example, an agent may take one day, week, or a month to
move from one cycle to another. Matching cycles to actual time duration is addressed during the
evaluation of the model, which is beyond the scope of this paper.

The simulation environment controls when plan generation, monitoring, and execution occur
with several modules that perform specific functions, as listed in Table 1. The simulation process
begins with simulate(St, Gt), which takes two parameters, the current state of the world St and
the agent’s unsatisfied goals GU

t at time step t. At the start of the simulation, SBR,t and Gt are
used to initialize the process. The procedure returns a set of final plans that were executed and
the resulting world states, PLFinal and SFinal respectively. Another module, plan(St, Gt, ASBR),
generates a plan P x

t using BRAMA’s STRIPS-based planner (Gajderowicz et al., 2017a). The third
parameter ASBR ensures the plan is generated using the agent’s bounded action schema in BR(I).
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Table 1. Simulation environment modules.
Module Descriptions
simulate(St, Gt) Begins the simulation process.
plan(St, Gt) Generates a plan P x

t using BRAMA’s STRIPS-based planner.
next_action(P x) Returns the next action a∗xt in plan P x

t .
exec(axt , St, Gt) Executes action axt , given true states St and goals Gt. Returns the new states St+1.
retain(Gx) Returns a set of goals GR that will be retained for replanning, as per Equation 21.

The function next_action(P x
t ) returns the next action axt in plan P x to be executed. The action

must be a correct action in AScor to ensure realistic preconditions and postconditions are enforced
on the agent during the execution phase. To ensure it is correct, the inverse of equation 5 is used,
mainly axt =inc−(a∗xt ) where axt ∈ AScor whether a∗xt is in AScor or not. Next, the procedure
exec(axt , St, Gt) executes the action, given the agent’s current unsatisfied goals in Gt and the true
current state St. During execution it transitions the state St to the new state St+1.

The agent monitors plan execution by comparing plan utility to ecoc-th, its mood-based thresh-
old. If the utility is above the threshold execution continues, but if the utility falls below the thresh-
old the replanning process is triggered. During the replanning process, GR=retain(Gt) returns a
subset of goals in Gt to be used in planning. For each goal si ∈ Gt ∩ G and each action axt ∈ P x

t

that satisfies that goal,

GR = retain(Gt) : {si ∈ Gt ∩G|si ∈ POST x
t ∧ U(axt ) ≥ act-th} (21)

where si ∈ POST x
t . The subset of original goals in G (excluding interim goals) not yet satisfied

are returned in the goal set GR, and used to generate a new plan. Goals not in GR are deferred until
a future cycle, as discussed in Section 5.2.

5.1 BRAMA Agent Model

The BRAMA agent model M provides properties used to define an agent that generates and monitors
plans while the simulation executes them and recalculates utility. The structure

M ={demo(), BR(I), BR(C), BR(T ), executil, G0, pref, planutil, ecoc-th, act-th} (22)

represents a particulate type of individual and his or her characteristics. The function demo() cat-
egorizes the agent as some cohort of a population based on its demographics, such as age, gender,
or income. The agent’s bounds (BR(I), BR(C), BR(T )) indicate its cognitive limitation during
the plan generation process. Its expected utility function during plan generation is exp(t), and its
initial goals at time step t=0 are G0. During the execution phase, the utility function (executil)
can be either exp(t) or ecoc(x). During the planning phase, the agent uses its goal preferences
(pref=A). During the execution phase the agent can be configured to use its preferred ranking
(pref=A) or Maslow’s ranking (pref=MH). During the planning phase, the agent always max-
imizes its utility. During execution, it can either maximize its utility (planutil=planutilswap)
or not (planutil=none). Finally, to trigger the replanning process, the agent has two thresholds
ecoc-th and act-th, as discussed in the next section.
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Figure 4. Agent simulation flowchart for simulate(St, Gt).

5.2 BRAMA Simulation Environment

Figure 4 presents the simulation flowchart, which relies on the agent model M properties to control
how the agent interacts with the external world. The simulation environment attributes and modules
are listed in Tables 1 and 2. If the agent is configured to evaluate plan utility during execution using
ECOC then executil=ecoc and the simulation may trigger the replanning process.

Once a plan is generated and plan execution begins, plan utility is recalculated at each time
step t. While monitoring execution, the agent compares the new utility to its ecoc-th threshold.
If Uecoc(pref, P

x
t )>ecoc-th, plan execution continues at time step t=t+1. Otherwise, goals are

retained using GR=retain(Gt) according to the agent’s act-th threshold, as per Equation 21. The
deferred goals are added to the set GD. If Uecoc(pref, P

x) < ecoc-th but either no goals can be
removed or all goals are removed, a new forced plan is created and executed without considering
ecoc-th. Any goals satisfied by a “forced” plan are accumulate for all forced plans in one cycle. If a
“forced” plan cannot satisfy its goals it becomes a “failed” plan. Goals of a “failed” plan persist until
they are satisfied after replanning or remain until the end of the simulation. After a “forced” plan
completes or becomes a “failed” plan, the agent generates a new plan for the remaining goals. This
plan’s initial state and goals are one from the previous time step, where Uecoc(pref, Px)>ecoc-th.
The cycle continues until all goals are satisfied or the current plan fails.

Once retained goals are successfully satisfied the state of the world is represented as SR and
plans required to satisfy retained goals is PLR. The simulation is executed again for all deferred
goals GD starting at state SR. Once deferred goals are retrieved and satisfied, the state of the world is
represented as SD and the set of plans required to satisfy all deferred goals is PLD. The simulation
ends when all retained and deferred goals are satisfied. The final state of the world is SFinal. The
set of plans used to satisfy retained and deferred goals is PLFinal, where PLFinal=PLD ∪ PLR.
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Table 2. Attributes of the BRAMA simulation environment.
Attribute Descriptions
t Simulation time unit.
St Actual state of the world at time step t.
Gt Agent goals at time step t, where Gt ⊆ GU .
P x Plan at index x.
P x
t Executed portion of plan P x from start to time step t.

axt Current action being executed.
GR Retained goals, where GR ⊆ Gt ∩G and GR=retain(Gt).
GD Deferred goals, where GD=Gt −GR.
SR State after retained goals are satisfied.
SD State after deferred goals are satisfied.
PLR Set of partially executed plans after retained goals are satisfied.
PLD Set of partially executed plans after deferred goals are satisfied.
SFinal Final state of the world, returned by simulate().
PLFinal Final set of executed plans, returned by simulate().

5.3 Replanning Example

Figures 5 to 7 illustrate the search trees an agent creates using STRIPS-BR, their goals and how
the replanning process reranks them. Consider an agent denoting a homeless client whose goals
are to obtain food (physiological), meet with friends (social) and meet a housing worker (security).
Some actions have preconditions that must be satisfied first. These include the subgoals of being
“at shelter”, “at store”, or the “at street”. The preferred order is [friends, housing, food]. To
achieve its goals, the agent creates a search tree with several plans to satisfy them. According to
the correct action schema AScor, food can be obtained by going to the shelter when the local soup
kitchen is open at 11:00 or 12:00. An agent can also purchase food at the store any time at a cost
of $10.00 and panhandle for more money. The agent can visit friends after the 12:00 lunch at the
common area where clients socialize. Finally, it can book an appointment with a housing worker
and wait until it is called for an appointment. The agent’s bounded action schema ASBR is a subset
of AScor ∪ASinc. In ASinc, food costs $3.00, which the agent believes, rather than the true cost of
$10.00, as defined in AScor.

5.3.1 Step 1: Planning

In Figure 5, the agent begins the planning process in the “Start” node at time step t=0. With a cog-
nitive bound of BR(C)=4 it can look four steps ahead. Each action transitions the agent into a new
node at time steps t=1, . . . , 4, with each subsequent node labeled as the goal that has been satisfied
at time step t. With a BR(T )=24, it can only see the first 24 nodes in the search tree, omitting the
last two branches that begin with a visit to the housing worker and panhandling. After calculating
the utility of each plan using exp(t) and its preferred goal ordering �A, the agent chooses plan P 1

as having the highest utility. The order goals are satisfied in remains the preferred order [friends,
housing, food].
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Figure 5. First search tree starting at time step t=0, and selected plan P 1.

5.3.2 Step 2: Execute Original Plan

During execution, the agent meets with friends at time step t=2 with the intention of next visiting
the housing agent to secure housing, then going to the store to buy food. Once at time step t=2,
however, the plan is reevaluated using Maslow’s ordering and the ecoc(x) expected utility function.
Since housing (security) is ranked lower than food (physiological) according to MH ranking �mh

but not according the preferred ranking �A, the agent becomes unexpectedly hungry. Knowing it
will only have one meal today, it becomes worried about spending the entire time waiting for the
housing worker without a meal beforehand. In this scenario, the utility of P 1 falls below the agent’s
ecoc-th threshold, triggering the replanning process.

5.3.3 Step 3: Replanning

The replanning process begins by identifying the actions for which uecoc(MH,axt ) < act-th, and
deferring any goals it satisfies. Housing is less important than food in Maslow’s order and, say,
utility of a “housing” action falls below the threshold, hence housing is deferred. A new search
tree is created for the remaining goal, food. The agent knows that it is too late for visiting the soup
kitchen, as it is after 12:00. There are only two possible plans for which preconditions are true in
SBR,2 at time step t=2. The first is plan P 11, where the agent buys a sandwich at the store for $3.00
with the $5.00 it possesses. The second is plan P 12, in which the agent panhandles for more money
and then purchases a sandwich at the store. Believing it has enough money for a sandwich and
having low expectation of making any money panhandling, the highest utility is calculated for plan
P 11, as Figure 6 depicts.

Starting at time step t=2, the agent generates and chooses plan P 11 for execution, which then be-
gins at time step t+1 until replanning is triggered or all goals are satisfied. The union of the partially
executed plan P 1

0,1 and the new plan P 11 produces P 1∪11, with the goal order [friends, food]. For
the new plan, the friends goal remains satisfied. The food goal is moved up from the third place
to the second place in plan P 1, while the housing goal is deferred and omitted from P 1∪11.
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Figure 6. Second search tree after replanning, starting at time step t=2, and selected plan P 1∪11.

5.3.4 Step 4: Execute New Plan

During execution of P 1∪11, the agent learns the true cost of food at the store is $10.00 and not $3.00,
so it tries to satisfy this precondition. As described in Section 5.1, the agent tries a “forced” plan
execution that ignores ecoc-th. However the precondition is a hard requirement, and the agent has
no immediate actions that would let it purchase food, so plan P 1∪11 is deemed as “failed”, but it can
search for another plan. For example, in Figure 6 the agent tries plan P 12, to panhandle and then
purchase the sandwich, which successfully makes enough money panhandling to buy a sandwich at
time step t=4 for $10.00, concluding execution of the plan P 1∪12.

5.3.5 Step 5: Planning and Execution for Deferred Goals

Once the friends and food goals have been achieved, deferred goals are retrieved and added to
Gt. For this example, the housing goal is retrieved at time step t=4. A new plan is created and
executed, adding a new action for visiting the housing worker and waiting for the appointment.
Figure 7 illustrates the new plan P 13 and how it extends the previous plan P 1∪12.

The result is a new plan P 1∪12∪13, where P 1∪12 is the executed positions of plans P 1 and P 12,
and P 13 is ready for execution. The simulation assumes executed actions are successful with 100%
probability. Hence, after execution at time step t=5, the agent successfully satisfies all goals in GU .
Alternatively, this success could depend, with some probability, on the availability of the housing
worker before the day is finished. However probabilities for success fall outside the scope of this
paper. The final plan is a union of all partially executed plans, resulting in plan P 1∪12∪13, stored in
PLFinal. The final goal order is [friends, food, housing] at time step t=5. Through replanning,
goals were reranked from the original order [friends, housing, food] the agent had preferred.

6. Related Work
Our approach to goal ranking and replanning incorporates ideas from a number of fields that aim
to reproduce human-like behavior. BRAMA builds on top of this work, but most existing methods
for plan generation, execution, monitoring, and replanning adopt the neoclassical approach to agent
behavior, making them unsuitable for modeling key aspects of human behavior.

The STRIPS-based planner used by BRAMA to generate plans is limited by its bounded ra-
tionality. Most planning systems incorporate methods for overcoming such bounds and improve
reaction time during execution, as reviewed by Hendler et al. (1990). For example, to overcome

225



B. GAJDEROWICZ, M. S. FOX, AND M. GRÜNINGER

t=2 t=3
Time (t)

housingvisit 
housing 
worker 
& wait

food

t=1
buy food
at store

visit friends 
after 12 at

common area

friendsStart

t=0

P 1�12

P 1�12�13

money
panhandle

P13

t=4 t=5
go to 
shelter
after 12

at shelter

Figure 7. Third search tree after replanning, starting at time step t=4, and selected subplan P 13, producing
the final plan PLFinal=P 1∪11∪13.

time bounds, classic planners like NOAH perform parallel planning to find multiple options for one
goal state. NASL interleaves planing and execution, executing one step at a time and replanning.
PRIAR uses case-based planning to annotate plans with dependencies between operators, which
it used during plan execution to replan more efficiently. A few recent systems explicitly define
bounds as part of the planning process and handle discrepancies between generated and executed
plans. Similar to BRAMA, PUG/X (Langley et al., 2017) explicitly sets cognitive bounds on the
search tree, as well as the number of plans to consider, before stopping search. There has also been
some research on reproducing cognitive impairments that cause bounded reasoning. For example,
Nuxoll et al. (2010) evaluated Soar’s episodic memory to investigate how well it performs with
different types of memory.

Goal reasoning in BRAMA focuses on ranking and satisfying the most important goals first
while deferring lower ranked ones. An agent’s preferred goal ranking, which is provided a priori,
is used during the planning phase. A domain-specific mapping of a goal to Maslow’s hierarchy is
used as the basis for goal ranking and utility calculation during the execution phase. Meneguzzi
et al. (2013) propose a hierarchical representation of goals expressed as commitments. ICARUS

(Langley & Choi, 2006) uses hierarchical goal definitions and a reactive goal management process,
with later versions reprioritizing goals as the agent’s situation changes (Choi, 2010). Shivashankar
et al. (2013) introduced the hierarchical goal network, a set of predefined methods that define the
relations among operators, goals, preconditions, and subgoals. ActorSim (Roberts et al., 2016) is a
simulator and planner with goal refinement capabilities. It uses hierarchical goal and task networks
from which the agent learns to perform sophisticated tasks efficiently. BRAMA can benefit from
such hierarchical goal structures, provided they can be grounded in a human-centric representation
like Maslow’s (1943) framework.

Replanning in BRAMA is based on triggering the replanning process, reranking goals, deferring
low ranking goals, and generating a new plan for high ranking goals. Benton et al. (2009) have
referred to such concentration on a subset of important goals as partial satisfaction planning. This
approach can be contrasted with systems that retain goals but modify or repair existing plans, as
in the case-based planning literature. Lee et al. (2008) proposed a hierarchical case-based reasoner
that selected parts of previous plans to modify the current plan. Hierarchical goal networks similarly
repair plans with predefined methods (Shivashankar & Alford, 2013). Rizzo et al. (1999) extend the
Prodigy planning architecture to include abstract goals and reactive action packages for execution.
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Other related systems rely on goal reasoning to control plan regeneration rather than refinement.
Cushing et al. (2008) provide a framework for satisfying abstract goals defined as commitments (re-
quired objectives) and opportunities (optional objectives). Replanning selects objectives for goals
that must be satisfied to maximize utility and minimize cost. PUG/X (Langley et al., 2017) trig-
gers replanning when one of four anomaly types are detected during execution, at which point
it generates given the current state and goal rankings. Some systems like PrefPlan (Brafman &
Chernyavsky, 2005) and AltAltPS (van den Briel et al., 2004) rely on predefined common-sense
rules that decide when to modify a plan and reprioritize goals.

Finally, BRAMA relies on a dynamic assignment of utility to goals and actions based on the
“mood” of the agent. Similarly, Ojha et al. (2017) propose a replicable, domain-independent com-
putational model for the emotional plan appraisal that generalizes assignment of emotions to events.
Such generalization, however, contrasts with most emotion-based planners, like ACRES/WILL, Ac-
tAddAct and EM-ONE that rely on predefined associations between emotional appraisals of specific
events, as Lin et al. (2012) discusses. Lin also contrasts how systems like FAtiMA, EM, FLAME,
Émile, and work by Gmytrasiewicz et al. rely on appraisal theory that associates events with dis-
crete emotional responses and valence. This analysis also describes how AI planners like EMA
utilize arousal theory and weighted drives to rate the utility of plans. Emotions have also been used
as replanning triggers. Steunebrink et al. (2007) propose a hierarchical representation of emotions
that statically link objects, agents, and consequences of events.

7. Conclusion and Future Work

The work presented here is based on the theoretical tenets that, for human-like goal-driven agents,
planning and execution stages can diverge and trigger a replanning process. It extends earlier work
with complete definitions of expected utility functions for planning and execution phases. This
paper defines the utility calculation for goal ranking based on domain-specific mappings of agent
goals to Maslow’s hierarchy, as well as a dynamic mood-based utility calculation. The divergence
between the planning and execution utility functions leads to a novel trigger condition for replan-
ning. The result is a set of partially executed plans that aim to reproduce the changes of seemingly
“irrational” agents using a rational reasoner.

However, the BRAMA agent model lacks support for a number of human-like characteristics.
First, the planning process is sequential, and would benefit from selecting operators in parallel to
pursue multiple goal rankings at once and consider multiple worlds efficiently. Second, the mapping
of goals to Maslow’s hierarchy could be extended by creating a hierarchical goal network, allowing
the ranking of goals at different levels of abstraction. Third, BRAMA would benefit from ranking
existing actions and learn about new actions. The current process simply iterates through available
actions until it finds one that satisfies outstanding goals. By providing actions with weights and
probabilities or the ability to modify them during execution, the agent could rerank actions, aban-
don incorrect or unused actions, and discover new actions through exploration. Finally, BRAMA
does not have the ability to generate new goals. Basic goals are provided a priori and reranked
dynamically, with interim goals added as required. New goals would let the agent satisfy basic MH
needs in new but realistic ways, like superficially satisfying hunger by drinking water or smoking.
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The evaluation of BRAMA would benefit from additional data sets that track the same or dif-
ferent intervention programs. By relying solely on the CHF-HF data set, we evaluated our archi-
tecture on its ability to replicate CHF-HF participants. By calibrating BRAMA agent models with
additional data, a social service program could be evaluated and ranked against alternatives. For
example, in addition to participant demographics and a successful or failed program outcome, pro-
gram participants across two cities could be categorized by BRAMA agent characteristics in M and
grouped into appropriate cohorts. By identifying the same M-based cohorts that failed in one city
but succeeded in the other, policy makers in the social service domain may identify city-specific
factors that lead to different outcomes for cohorts target by the program.
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