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To answer what-if x anagers of complex organiza- tion centers depend on manufacturingToanswer wha if tions are seldomable to answer centers and vendors to supply componentsques*ons,Al:D uses .vO what-if questions. Systems and products to replenish their stock.
artificial intelligence that simulate such organizations cost too The problem is further complicated by
techniques to model much to develop- and even the ones that seasonal demands, varying lead times to

are created cannot readily answer simple build or expand manufacturing facilities,
complex organizatifons, what-if questions. Instead, a manager need to maintain uniform production
recognize cause-and- must rely on an intermediary, like a systems levels, contractual agreements with
effect relations, and analysts for his answers. We created KBS, vendors, and effects of weather and labor

the Knowledge-Based Simulation system, problems on transportation schedules.
genemtes scenarios to address this problem. The corporate distributionproblem puts

automatically. The KBS approach is similar to another tremendous demands on managers at all
artificial intelligence simulation system, levels. They face making decisions that
Ross.' Both KBS and Ross are object- have far-reaching consequences to the
oriented modeling systems that contain entire corporation.
attribute and behavioral descriptions and Consider some ofthe decisions faced by
provide interactive access and display. managers at various levels in the corporate
KBS, however, stresses the automatic distribution system. The primary objective

analysis of simulation results. The model of simulating a corporate distribution sys-
is the kernel ofthe Intelligent Management tem is to answer questions like
System,2 which must support many func- * Where should we locate manufac-
tions, including factory monitoring, turing plants for various components
scheduling, and question answering, as and what should their capacities be?
well as simulation. KBS is an interpreter * Where should we locate distribution
that accesses the model and provides simu- centers and what should their capa-
lation, model checking, and-data'analysis. cities be to meet our forecasted

demands in each geographic area?
* Should the products be merged at

Example domain distribution centers or at customer
Corporate distribution systems serve as sites?

example domains to illustrate KBS * How do transportation modes and
features. In this example, a mnanufacturer schedules affect customer stockouts
produces several products mnade of many and satisfaction?
components and subassemblies, some of * How do delays in vendor shipments
which are produced by the manufacturer affect key components?
at widely distributed locations and some of Do we have enough manufacturing
which are purchased from vendors and distribution capacity to meet an
throughout the world. anticipated increase in demand for

These components and subassemblies products?
are transported to several distribution * What are the effects of consolidating
centers where they are stocked. Each manufacturingand distribution faci-
distribution center serves customers in its lities?
assigned area. The customer may be a * Howdoes a proposed order handling
retailer or special costomer who can deal procedure affect the corporation?
with the distribution center or the These questions illustrate the complexity
corporate business unit directly. of the distribution domain and suggestthe
A customer's product and component need for tools to aid decision-making at

requests are processed by the business unit several levels.
or the distribution center for shipmentand For example, low inventories can reduce
merging at thecustomer site. The distribu- inventory carrying costs, but frequent
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Robert S. Barton:
language-directed architecture

stockouts can reduce both sales and total Model validation. A recurring problem and completeness rules. However, this
profits. Therefore, tools should handle in simulation systems- including KBS- problem is more comprehensively
conflicting goals. The KBS approach to is maintaining model consistency and addressed by the logic programming
simulation deals with such issues. A completeness. We found much time is techniques more recently incorporated in
simplified model of a corporate distribu- wasted discovering errors and holes in the the Schema Representation Language.
tion network is shown in Figure 1. model, so we constructed a language and A consistency constraint relating the

an interpreter to specify model consistency resellers and distribution centers in the cor-

Model building
A KBS model3- is a collection of Ml M2

Schema Representation Language Manufacturers
schemata7 that represent physical and .
abstract system entities. The schema is the \
basic unit that represents objects,
processes, ideas, and so forth.

For example, the distribution-center .-
schema (Figure 2) contains slots, some Dl ...... D...9..
which define its physical limitations *--1
(capacity), some which define its current AD Distribution centers
status (inventory), and some which define
event behavior (receive-order-event). Administrators.

Slots can have values, and each may have
a set of associated facets or metainfor-
mation (printed in italics). The range facetb***o*O.
restricts the type ofvalues that may fill the _ *1
slot. The default facet defines the value of Resellers
the slot if it is not present. RI R2 R3 R4
An important aspect of the Schema

Representation Language is that schemata Figure 1. Example of a simplified corporate distribution system model.
may form networks. Each slot in a schema
may act as a relation tying the schema to
others. The schema may inherit slots and
their values (also called fillers) along these { { distribution-center:
relations.CA CIY
Model creation in KBS is simply the INVENTORY

creation of schemata that represent the SHIPMENT-TRANSIT-TIME:
model's entities, including specifications RECEIVE-ORDER-EVENPI"receive-order-rule"
for their event behavior and intercon- Range: (TYPE instance event-rule)
nections with other schemata. The RECEIVE-SHIPMENT-EVENT."receive-shipment-rule"
window-based schema editor, sedit, offers Range: (TYPE instance event-rule)
a fairly general facility to create or alter ADMINISTRATOR
schemata. One window displays the Range: (TYPE instance administrator)
schema being edited, while the other ORDER-TRANSIT-TIME:
window accepts commands to manipulate BACKORDERS:
that schema. TOTAL-ORDERS:

Sedit is one of several tools that help INVENTORY-COST }}
model creation and alteration. Once
created, models may be perused by visiting
each entity or communicating information
through pictures. Figure 2. Distribution center schema.
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porate distribution simulation model may facility helps determine the source of fail- unchanged. Because only the model's
be specified as a Lisp expression. ure. With the interpreter, we can discover static aspects are affected, these are called

(for-all 'reseller '(VIEWED-AS missing schemata and schemata with static techniques. Dynamic techniques
instance reseller) inconsistent slot values. alter a model's dynamic processes,

'(there-exists 'dc '(VIEWED-AS redefining some of the event behaviors.
instance distribution-center) Model reduction. Complex simulation There are two types of static abstraction:

'(and (reseller.SUPPLIED-BY models can be simplified or reduced by equivalent node aggregationand data class
= dc) automatic alterations if the model builder aggregation. Equivalent node aggregation

(dc.SUPPLIES - reseller)))) has created a knowledge framework for the combines several nodes into a single node
This constraint may be interpreted as task. The simplification makes models run of the same type. This new node must be

"for all resellers there should exist faster, increases model understanding, In some sense the sum of the original
schemata of the type distribution-center simplifies analysis, and eliminates nodes. If the new node's parameters are
such that the schemata have consistent unnecessary details. adjusted correctly, the new node will be
values for the slots supplied-by and Model simplification techniques fall functionally similar to theold group. The
supplies." into two main categories: static and rest of the model is not affected. For
KBS evaluates each constraint and dynamic. In static techniques, both model example, in Figure 3, individual stores in a

reports whether it was satisfied. In case of structure and model parameters are region may begrouped to form a regional
a constraint failure, the interpreter's trace altered, but event behaviors remain store.

In data class aggregation, objects are
grouped into classes and all references to

{{aggregate-stores the members are replaced by references to
INSTANCE: equivalent-node-aggregation the class. An example would be to group all
TYPE:"store" items sold into classes. In the. computer
comment: "type of node to aggregate business, different types of personal

SUPER-NODE:"regional-store" computers may be grouped into a broad
comment: "single node replaces subnodes when abstract" class called "PC." This greatly reduces the

SUB-NODES:"storel' '...store2"'...store3" amount of data needed to track inventory
comment: "set of nodes present at detail level" levels for each separate type of personal

AVERAGE-SLOTS:"lost-sale-percentage"
comment: "aggregate slots filled by averaging" computer.
UNIO-SLTS:("orer-eek"'aggregate-weekly-demand") Dynamic abstraction' tries to simplifyUNION-SLOTS: ("order-weeks'tory") simulation models by analyzing the

("operating-days") stimulus-response event behavior of one or
comment: "aggregate slots filled by summation" more nodes. It also tries to construct a

SELECT' (select-node-aggregation) single node with a stimulus-response
DESELECTI (deselect-node-aggregation) behavior that is statistically similar. This

} technique can combine nodes of the same
or different classes.

Figure 3. Example of equivalence node aggregation. Statistics on event behavior can be
obtained by either constructing stimulus
response frames or postprocessing infor-
mation gleaned from model introspection.

{{ event-24 However, purely statisticalinformation on
INSTANCE: event-notice events is difficult to use because event
FOCUS :DI parameters cannot readily be abstracted,
comment: Focus of event, the entity and the abstracted model may become

EVENT z'"receive-order-event" anditent.comment: event-slot in event-schema inconsistent.
TIME :"21 April 1985 11:00:00"
comment: Time of execution

PRE-ACTION: nil Model dynamics
comment: Action to be taken before event execution The KBS kernel interprets the model

POST-ACTION: nil once it has been defined. KBS uses the
comment: Action to be taken after event execution discrete event simulation approach, which

EVENT-PARAMETER: orderlO manages a calendar ofevents. A calendarcomnment: Event parameters is a set of event notices ordered by
RUN-EVENT' run-event
comment: method to execute event execution time. An example event-notice

schema is shown in Figure 4. In discrete
event simulation, the system changes state
at discrete points in time. Running the

Figure 4. An example event notice. model simply means executing the next
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event queued in the calendar until there are
no more events or until some criteria to
stop are encountered.

In the example event notice, the event
receive-order-event is to occur on April 21,
1985, at 11 a.m. focused around distribu- Edsgar W. Dijkstra:
tion center Dl. To execute this event, the multiprogramming control
simulation clock is advanced by the system
to 11 a.m. on April 21, 1985, the value of
the slot receive-order-event of the schema Runtime model management. KBS they are improvements on past experi-
Dl is extracted, and each item found in the supports a feature rarely found in tradi- ments. The improvements are automati-
list of values is interpreted. tional simulation environments: the ability cally achieved by rule bases detailing the
The items in the list of values in the event to conduct a series of experiments without diagnosis and correction heuristics. To

slot may be representing a Lisp function, human intervention. Individual experi- work correctly, the rules must allow for
a rule, or an instrument designed to collect ments don't exist in a vacuum. Instead, reasoning between several model scenarios.
data, display some text, or produce graphic
side effects.

{E{ receive-order-ruleEvents. Event behavior may be INSTANCE: event-rule
expressed as rules to be executed when the IF: (something-in-inventory)
event occurs. Figure 5 shows an example of THEN: (schedule-transport) (deduct-from-inventory) } }
an event rule. When interpreted, this rule
implements the policy "If there is suf-
ficient inventory to process this order, then Figure 5. Event-rule example.
schedule a transportation event and reduce
inventory by the amount in the order." The
order and the object are specified in the
rule's parameters. This rule may be
deposited in the receive-order-event slot in
Figure 2.

Simulation execution. At the end of - l
each simulation run, we may fire a rule - - - -
base that will suggest changes to the model
for the next run. After running many of
these goal-directed experiments, we hope
to get scenarios that come close to
satisfying simulation's goals.

Figure 6 shows the information KBS
needs to conduct a series of experiments.
INET-expert-run-spec specifies whether
introspection, scenario rating, or auto-
matic diagnosis is required. If automatic
diagnosis is required, a rule set should be
provided. A limit on the number of experi-
ments prevents the system from getting Figure 6. Filling in the run profile for the expert system.
hopelessly lost while trying to find a desir-
able scenario. At least one experiment
should be specified in the expert specifi- { { e3
cation. Users also specify simulated start INSTANCE: "KBS-experiment"
time, stop time, and active displays. EXPERIMENTAL-CONTEXT' "kbs-experiment-context-3"
The KBS-experiment schema in Figure comment: "context for this experiment, child of base-context"

7 describes individual experiments. The MODEL-CHANGES: "e4-change-spec"
slot model-changes is filled with a set of comment: "provides a description of the model for this experiment.
change specifications that describe the The base model is altered accordingly"
changes that need to be performed on the | ..

model before the experiment begins. There
are also slots whose values reflect the
experiment's status. Figure 7. Specification of an experiment.
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One can manage alternate scenarios by accesses the value of an attribute it should selective instrumentation facility goes a
creating a context tree that devotes each be included in the attribute event chain. long way toward simplifying data collec-
context to a scenario. Introspected information collected tion and analysis, it still requires the

Contexts in the Schema Representation during model execution is stored as simulation user to manually instrument
Language are hierarchically arranged so metainformation on event and attribute each schemaand subject the collected data
that if a schema being accessed is not slots. Figure 8 shows an example of entity to an appropriate analysis.
found in the specified context, the Dl after introspection.
context's ancestors are searched until the
schema is found or the search fails. A Data colection. The task of data collec- Automatic analysis
.schema may only be created within some tion is concerned with recording the One important task for a simulation
context, and the name of the schema must changes in the value of a parameter. This analyst is to fine-tune the input parameters
be unique within that context. Schemata can be done by constantly monitoring the of a model to bring the values of output
with the same name may, however, exist parameter and recording every change or variables within a desired range. Rating a
within different contexts and contain by sampling the parameter. The former scenario'0 measures the goodness or
conflicting information. yields greater accuracy but incurs greater badness of simulation results. For example,

computational overhead while the latter if the goal is to eliminate stockouts and if
Model introspection. Introspection' is approach is less accurate but satisfactory in a given simulation the average stockouts

acquiring knowledge, or learning, about in many cases. is 10 percent of total orders, we would like
the dynamics of model execution auto- In KBS, monitoring is accomplished by a better answer than "no" when asked,
matically by tracing. By postprocessing the attaching demons to slots while sampling "Have we reached the goal?"
learned knowledge, we can detect causal is done either by scheduling data collection To rate scenarios more smoothly, we
chains of events and attributes. Causal events or as a separate action during the chose a continuous scale of rating from -1
chains are formed by events causing other execution of regular events. Since data col- to +1 in which -I means the results are far
events, events affecting attributes by lection in KBS is analogous to using from the goal and +1 means the goal has
increasing or decreasing their values, and measuring instruments, we have intro- been completely satisfied.
events accessing attribute values. duced the notion of an instrument. Since goals are often complex and may
The system can detect how an event Instrumentation is selective so that only consist of conflicting subgoals, we

affects an attribute - but not vice-versa. the data relevant to a particular goal may approach the specification of simulation
We therefore assume that if an event be gathered and analyzed. Although the goals as a composite set of constraints"'

on the performance of various entities of
the system modeled.
The steps in the construction and

{{DI evaluation of goals are
INSTANCE:' distribution-center"
BELONGS-TO:"inet" * Representing each organizational goal
RECEIVE-ORDER-EVENIP as a set of constraints.

{ { INSTANCE:"KBS-event" * Selecting and attaching instruments to
CAUSES: (RI (receive-shipment-event)) ... (Al (receive-order-event 33)) gather data.
comment: "number of times events that are caused by this event" * Specifying procedures for computing

CAUSED-BY: (RI (send-order-event 12)) ... (R3 (send-order-event 12)) performance measures from raw data.
comment: "number of times events that caused this event" * Executing the simulation for the given

AFFECTS-ATR: (KBS-generated (new 3)) scenario.
(DI (inventory 3) ... (total-orders 36)) * Evaluating each constraint by

comment: "describes how many times this event has affected attributes" computing ac constraint
ACCESS-ATR: (KBS-generated (new 78)) satisfactonfwich e o stramt(Dl (inventory 42) ... (order-transit-time 33)) satisfaction, which maybepositive to
comment: "describes how many times this event has accessed attributes" indicate the goal has been met or

negative to indicate the goal has not
INVENTORY: been met.

{ { INSTANCE:"KBS-attribute" * Evaluating the scenario by computing
AFFECTED-BY: (Dl (receive-order-event 3) (receive-shipment-event 3)) a coefficient of goal satisfaction as a

(Al (process-order-event 14)) weighted average of constraint
comment: "described number of times events affected this attribute" satisfactionaoefficientso

ACCESSED-BY: (Dl (receive-order-event 42) (receive-shipment-event 6))
(Al (process-order-event 111)) Consider a composite organizational

comment: "describes the number of times events have accessed this goal to increasecustomer satisfaction while
} } attribute" keeping the distribution overheads low.

..... This goal may be broken down into two
L } subgoals: (1) Customer stockouts should

not exceed five percent of orders and (2)
Figure 8. An example introspected schema. distribution cost per unit sold should not
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exceed 10 percent of the manufacturing
cost (see Figure 9).
The actual goal evaluation is an event

scheduled to occur at some future date
according to evaluation-schedule, at which
time it is evaluated. Richard W. Hamming:
A goal evaluation function will retrieve error-correcting code

the contributing-constraints of the
organizational goal. Each constraint is
evaluated to compute a rating. This rating, a single schema representation. Expert IF a Reseller's average inventory is
weighted by the importance of the con- knowledge is codified as rules or logic high
straint, contributes to the overall rating of programs to identify situations such as AND Stockouts are high
the organizational goal. If the goal is bottlenecks and lack of inventory. An AND shipments are received infre-
evaluated more than once, the direction of example rule is quently
the successive ratings can help one decide
how well or badly the organization is
doing. (a)
The INET-goal discussed in the example { { INET-goal

on rating scenarios was implemented on INSTANCE: "BBS-goal"
the example corporate distribution model. CONTRIBUTING-CONSTRAINTS: "satisfy-customer""economize distribution"
After a few days of simulated time, the goal EVALUATION-SCHEDULE: "daily-at-midnight" } }
was evaluated and reported (Figure 10).
This result indicates that customer (b)
satisfaction was bad because it was rated { { satisfy-customer
negatively (-0.9), but the distribution costs INSTANCE: "goal-constraint"
were economical and were rated at +0.844, CONSTRAINED-BY "satisfy-customer-spec"
which is good. However, as the calculation IMPORTANCE: 0.70 }}
below shows, the overall goal rating is still (c)
negative and therefore unsatisfactory.

{{ economize-distribution
Goal Rating = wt. avg. of individual INSTANCE: "goal-constraint"

constraint ratings = CONSTRAINED-BY: "economize-distribution-spec"
(0.3 * 0.844 + 0.7 * IMPORTANCE: 0.30 }}
-0.900) / (0.3 + 0.7)
--0.3768

Figure 9. (a) An example of the corporate distribution system's goal (b) Retailer satis-
The instruments, goals, and constraints are faction goal constraint. (c) Distribution cost reduction goal constraint.
constructed manually but data collection
and reporting are done automatically.
When goals are more complex, they may

be viewed graphically with a Kiviat chart
like the one in Figure 11. In Kiviat graphs,
all performance parameters that are
"good" when they assume large values are
plotted above the x-axis while the perform-
ance parameters that are "bad" when they
are large are plotted below the x-axis. The
shape derived by connecting these
parameters quickly shows whether the
current scenario is good or bad (bad
scenarios have large areas below the
x-axis).

Rule-based diagnosis. Another way to
evaluate simulation results is through rule-
based analysis. The rules capture the
knowledge of expert simulation analysts.
The Schema Representation Language
provides an integrated rule, logic, and
object programming environment that uses Figure 10. Example of goal evaluation.
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Ideal simulation environment
Before creating KBS, we analyzed what was needed to create an decision-support

environment. We identified a need for more sophisticated tools to analyze organiza-
tions and for tools that managers could use themselves.
We tried to understand functionality types that managers need to construct, execute, THEN

and analyze simulations. We also tried to upderstand how functionality affects the indicate possibility of a
underlying modeling theory, because the model dictates the usefulness of any simu-
lation. We restricted our analysis to discrete event simulation systems and examined erampletisonottanact
many simulation modeling theories and methodologies The exampIe is not an actual rule.

Our research shovws that an ideal simulation environment should include facilities for Currently KBS's diagnosis and correction
* declaratively representing models that reduce or eliminate the programming effort; rules are written in OPS5 The working
* different programming paradigms such as object-oriented, logic, data-oriented, and
rule-based programming; memory on which these rules operate is

* behavioral representation of system entities through an object-oriented (frame- created from Schema Representation Lan-
based) knowledge representation that lets entities be altered without altering the guage schemata.
simulation model interpreter;

* expression of events as rules to make models more readable; Causal path analysis. The output from
* alternate command interfaces such as text commands, natural language, and simulations is often analyzed by such
graphics;

* selective instrumentation of models so that only data of current interest is collected; traditional methods as regression and
* automatic model abstraction where the model is represented at multiple levels of correlation between the variables in the
abstraction so the usercan specify the simulation level and the system in tum auto- model. Howev,r, we must first determine
matically configures the model; the underlying causal structures before we

* model validation to save time otherwise spent verifying model consistency and can undertake the analysis.
completeness;

* interactive access to model building and simulation through a command interface The objective of path analysis"2 is to
using windows and graphics; detect causal relations embedded in a

* goal-directed instrumentation where a user need only select a goal so the system simulation model and exploit that knowl-
can automatically select the appropriate instruments, attach them to the relevant edge to generate scenarios that realize
schemata, analyze the data, and report its conclusions;

* model understanding to disclose model behavior by stepping, tracing, and display- organizational goals. Causal relationships
ing communications between and within events; between variables can be detected by

* model verification to check whether modeling intentions are carried out faithfully" postprocessing knowledge learned in
* interrupts and checkpoints that can explore the effects of altemate decisions while introspecting simulations. Path analysis
preserving the original simulation's states;

* automatic scenario rating to assess the desirability of model scenarios; research handles both the qualitative and
* rule-based diagnosis that mimics reasoning to both detect problems and recom- quantitative aspects of rule-based analysis
mend solutions to them; of simulations. A simple rule-based

* statistical analysis through a comprehensive library of functions including regres- analysis without path analysis is nothing
sion analysis and random number generators; more than automating the ad hoc

* causal path analysis to see how much variance each cause contributes to each
effect modeEd, ~~~~~~~~~~~~approach,to model simulation.effect modeled;

* color graphics to depict models statically and dynamically; Typical steps involved in the refinement
* business graphics to display data as plots, bar graphs, histograms, pie charts, gantt of rules using path analysis are
charts, and kiviat charts; * A rule is proposed by the domain

* selective report generation to schematically design reports about the simulation's expert.
goals; and

* simulations integrated with expert systems to examine the performance of a sce- * The causal assumptions the rule is
nario and suggest model modification& based on are validated against the running:

While KBS, in its present state, incorporates many of these features, several features model. Validation implies detection of
such as automatic model abstraction are not yet available. They will be incorporated causal chains in KBS models. The rule may
in future versions. need to be modified if the initial causal

User defines goal assumptions were either erroneous or
insufficient.

* Alternate causal structures are then
User/systemdefines proposed and automatically analyzed. The

constraints, most appropriate causal structure is cho-
<_instruments o sen and the results are summarized to yield

an eqpation reflecting the sensitivity ofthe
output parameter with respect to the

r > Simulate controllable input parameters. Thus, path
analysis finds the degree to which each

System diagnosesprnblems particular cause in the modeled system
< suggestschanges , determines the variation of a given effect.

System analyzes * The sensitivity information is used to
unsatisfactory results quantitatively refine the rules.

z od
A detailed example. A typical example

in the corporate distribution domain
illpstrates the steps taken to arrive at a

.____________________________ _ refined rule after starting from a more
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U,

general rule proposed by the domain
expert. The rule here is a diagnosis and cor-
rection rule.

IF The Goal is to minimize stockouts
and Average-Inventory is Low and Donald E. Knuth:
Stockouts are High and Production science of computer algorithms _
Rates can be monitored

THEN
Increase the Production rate

To be specific, the rule must refer to
actual instances of objects in the model.
We are using the I-Net model of the
corporate distribution system domain in
Figure 1.
By concentrating on manufacturer Mp

and distribution center D1, the rule
becomes a bit more specific expressed as

IF The Goal is to minimize Dl:stock-
outs and Dl:Avg-inventory is Low
and Dl:Stockouts are High and Ml:
production-rate can be altered

THEN
Increase Ml :production-rate

Drawing on simple domain knowledge,
Dl:stockouts is an output parameter andMl:pr a w D :ou
Ml:production-rate is an input parameter.
A few causal structures, as shown in Fig-
ure 12, are proposed that attempt to
include the variables in the rule causallY Figure 11. Complex goals viewed graphically.
connected to each other along different
paths.

First, we used KBS's introspection to
verify whether Dl:avg-inventory,
DI:stockouts, and Ml:production-rate are Unknown Unknown
indeed causally connected. For example, in 0.322
hypothesis hl, we must verify whether
Mi:production rate is connected via an D1:avg-inventory Unknown
events chain to DI:stockouts and Dl:avg- Ml:produt t Dlstockout - 0.28
invenItory. We must also verify whether -0.79 ,,~$.
Dl:avg-inventory is connected to DI:stock- Ml:production-rate D Dl:stockout
outs. Figure 13 shows the causal chain (h2)
connecting Ml:production-rate to Dl:
stockouts. It is not the only possible path
between the two variables.

Mlmanufacturing-event accesses attri-
bute Mll:production-rate. Ml :manufac- Unknown Unknown
turing-event causes a send-shipment event. 0.32 0 84
The DI:receive-shipment event receives the 0.28
shipment, causing an increased inventory
at Dl, which affects the attribute 0~.95~ -0.~92
Dl:inventory. The receive-order event Ml:productio-rt D1:avg-inventory -Dl:stockout
accesses attribute DI:inventory to check
material in stock. If the inventory is (h12)
insufficient for that order, Dl:inventory
records a stockout, which affects the
attribute Dl:stockouts. Therefore, we
assume that Ml:production-rate is causallY Figure 12. Ca.usal hypotheses ia iaet-pc model.
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connected to Dl:stockouts. compute the coefficients in the path stockouts. The most appropriate
As Figure 14 shows, the causal assump- diagrams. hypothesis is h2, and from the

tions made in hypotheses hO, hl, and h2 in Figure 15 shows the equations derived unstandardized path equations we derive
Figure 12 are valid. We included hypothesis from various hypotheses. The residual the sensitivity information necessary to
hOto show the naive approach - ignoring (unknown) influence on Dl:stockouts improve the rule.
the intermediate variable Dl:avg-inventory (+0.62) in hO is higher than in hi and h2 Summarized path analysis
- that would be taken in the absence of (+0.28), suggesting that hypothesis hO Dl:stockouts = -0.086
path analysis. should be dropped from further
A series of experiments measures consideration. We then reject hi because Ml:producton-rate + 39.96

Dl:avg-inventory and Dl:stockouts while the path coefficient from Ml:production- Sensitivi: p
changing Ml:production-rate. From the rate to Dl:stockout is positive, leading us r(Dl:stockouts)/6(Ml:production-
data gathered, we subject all alternate to incorrectly believe that increasing (Ml:produc0tion-rate)/d(Dl:stock-
causal structures to path analysis and production rate results in an increase in outs) = -11.6

Getting back to the rule, a possible
refinement may be

IF The Goal is to keep Dl:stockouts
below 40%o AND
Dl:Avg-Inventory < 30 AND
Dl:Stockouts are in the range
40%o-50(7o AND

M1:manufacturing M1:send-shipment D1:receive-shipment D1:receive-order Ml:production-rate can be altered
event --- event * event event THEN

Ml:production-rate=
Ml:production-rate + 11.6
(Dl:stockouts - 40)

Ml :production-rate Dl: inventory Dl :stockouts KBS architecture
attribute attribute attribute Conventional simulation systems are

essentially descriptive tools because they
only describe the performance of a given
scenario. They do not provide any clues as
to what changes should be proposed so
that the simulation goals may be realized.

Figure 13. Causal chain derived from introspected data. Figure show sthe a erealize-Figure 16 shows the architecture of a KBS-
based expert system.

In this architecture, the user interface
processor receives a request from the user.
If it is a simple request for information, the
model database is accessed to retrieve the
appropriate information. If it is a request

_ 11 l | | ii | ii for a prescription (that is, a goal-oriented
request), the request is analyzed by a rule-
based goal analyzer.

This analysis may invoke an operations
research tool, a specification to conduct a
series of experiments, or a specification to
execute the simulation model in the learn
mode to detect causal relationships.
When causal relationships are detected,

they may enhance the domain rule base
used in diagnosis. Experimental results are
then analyzed. If they are satisfactory with
respect to the goal (the scenario achieved
a high rating), a recommen,dation is made

7_7-MIl 7777771W JO# based on the best scenario. If the results are
not satisfactory, the diagnosis and correc-

Figure 14. Validating hypotheses. tion rules are fired. They may generate
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change specifications for the next exper-
iment.
KBS can perform several types of

analyses to satisfy a specified goal.

Static analysis. Used when no time- Maurice W. Wilkes:
dependent information plays a role in the microprogramming
analysis.

Performance analysis. Used when one of
the following is requested: between the two alternatives in terms of the Franz Lisp running under the Unix

* Scenario rating. performance metric. operating system. It is now being
*Diagnosis. This detects the causes reimplemented in Knowledge Craft, a

of unsatisfactoy mdetetstheavior. Experience derivative of the Schema Representation
of unsatisfactory model behavior.
* Scenario generation. This is used KBS was written in the Schema Repre- Language.'3 Programmers in the Schema
when several scenarios have to be tried sentation Language and implemented in Representation Language and KBS envi-

before a prescription can be provided.
* Trade-off. This is used when _

necessary to compare several
scenarios.

Learning. Ifthe objective of executing the a
simulation model is to detect embedded -
causal relationships, the model is executed
in the learn mode and subsequently
processed by the causal analysis module.
Mathematical analysis. If the goal

analyzer determines that the current
request can be satisfied by amathematical
analysis rather than by simulation, it will
invoke an appropriate analysis tool.

Figure 17 shows a log of a simulation
model execution analyzed automatically.
Its automatic analysis led to construction
of an improved scenario, kbs-experiment--
2. The run specifications that produced
this analysis are shown in Figure 6.

Analyses that may be performed by a Figure 15. Analyzing hypotheses.
system such as the one shown in Figure 16
include

Predictive analyses. These address prob- User

lems such as "What is the effect of adding
a new distribution center in Chicago?" The User interface processor
solution is to change model parameters
and structure, select performance
parameters, execute the model, and report Goa s
conclusions.

Diagnostic analyses. These address
problems such as "What is the cause for Goal analyzer
delays in transportation to San Diego?"
The solution is to use causal path analysis per ment
and response analysis.

Trade-offanalyses. These address prob- | LKB S -I Rule
lems such as "To reduce distribution delays J n

in the central region, what is the trade-off good unsatisfactory
between expanding the capacity of the Recommendation esull
warehouse at Chicago and constructing a
new warehouse in Kansas?" The solution
is to generate two scenarios, evaluate a per-
formance metric, and print the trade-off Figure 16. Architecture of a KBS-based expert system.
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ronment can also use a rich set of model with only one business unit (an Creation of the INET-pc model hap-
intelligent tools and interchangeably adopt administrator) serving distribution centers, pened quickly, largely because of a
any of the programming styles commonly vendors, resellers, and stocking points. network editor customized to suit the
found in artificial intelligence, such as With this prototype we illustrated in distribution domain. The model validation
logic, rule-based, data-driven, and concept the advantages of using KBS as a facilities built into KBS also helped us
objected-oriented programming. modeling tool. We animated this model maintain a correct model at all times. The

During the last four years, KBS has been with color graphics, and generated fairly introspection feature aided debugging, as
used in several real-world simulation sophisticated reports that used multiple well as inspiring confidence in the
applications, including a printed circuit windows to display performance data correctness of the model.
board manufacturing facility, a light bulb aimed at different audiences. We also It was then that we developed a formal
manufacturing facility, a flexible assembly demonstrated voice output. notion of an instrument to collect data
plant, and a corporate distribution and Throughout the project, all events in the during model executions. A natural-
inventory system. model were designed by domain experts language-based command set was also
The earliest project, the printed circuit (both programmers and nonprogram- hurriedly developed to peruse the large

board manufacturing facility, lasted about mers). It was a tribute to the underlying model, and several business reports using
one man-year. It was a testbed for Schema Representation Language that graphics were incorporated to suit the taste
developing the initial KBS kernel and these people quickly became active of managers.
demonstrating the feasibility of using participants in the model construction Unfortunately, with the added function-
objects to represent entities and rules. That phase as well as in the subsequent model ality and large size of the INET-pc model's
system boasted an intricate spatial repre- modification phase. The domain experts network (about 80 facilities), the execution
sentation of the manufacturing facility had no difficulty understanding the model speed of the simulation dropped so much
using graphics. Managerial personnel who because it directly mirrors the system being that we were forced to stall development
were not domain experts, but who could modeled. and testing to continue our research into
understand the importance of the perform- Encouraged by these results, we in- automating simulation analysis. This time,
ance metrics, greatly benefited from the creased the level of detail in the represen- we are using an abstract corporate distri-
graphics displays generated by the model. tation and event behavior in the early I-Net bution model such as the one shown in Fig-
The light bulb factory and the flexible model until we finally constructed a full- ure 1.

assembly plant were short experimental blown realistic I-Net model, called the In this recent phase of the project, we
ventures (three man-months each) that INET-pc. The specification of event made several important additions to KBS.
were a part of other bigger projects. behaviors, which required programming in At a more mundane level, a fairly compre-

Since then, most of our experience has Lisp, continued to pose difficulties. How- hensive statistical library, which included
been with the corporate distribution and ever, the introduction of event rules in a causal path analysis package, was created
inventory system, called I-Net, I which we schema form with embedded Lisp func- in Franz Lisp. The existence of a context
continue to work on. The I-Net project tions helped us understanding model mechanism in the Schema Representation
began with the development of a prototype dynamics. Language was then exploited to

simultaneously maintain several model
scenarios to let us reason in alternate
worlds.

This set up the framework for an expert
system architecture where several
experiments could be conducted in the
same session- with diagnosis and correc-
tion between each experiment. Rules for
diagnosis are written in OPS5. The
working memory elements they operate on
are created from model schemata before
the rules are fired. This conversion from
schemata to working memory elements
and back into schemata is made possible
by local utilities.
When rules fire, they create specifica-

tions for future experiments. The rules we
created for our simulationswere made only
to illustrate our system - they were not
handed down to us by the experts. When

tie .tin ; _r_wedo get a set of rules from the experts,
they will be quantified with path analysis.
Before we do that, we expect to get better

Figure 17. Recommendation from automatic analysis. hardware and software, thereby improving
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