SRL +

Kernel Language Definition
and User Manual

VYersion 1.0

J. Mark Wright, Mark S. Fox, David Adam’
Carnegie Group Inc
Station Square at Commerce Court

Pittsburgh, PA 15219

21 September 1984

Copyright © 1984 Carnegie Group Inc . All Rights Reserved.

1Earlier versions ot this manual have appeared as internal reports of the Intelligent Systems Laboratoty, Robotics Institute,
Carnegie-Mellon University, Pittsburgh Pennsyivania 15213.

Mark Fox

Mark Fox

21 SEPTEMBER 1984 SRL2 MANUAL PAGE!

Table of Contents

1. Introduction , 1
2. Language Overview , 7
3. Schema Manipulation 15
3.1. Schemata: How to create, delete, and test their existence 16
3.2. Creating and manipulating meta-schemata 17

4. Slots and Values 21
4.1. Slot Definition 22
4.1.1. Meta-slots: Creating and accessing them 24

4.2. Value Definition 26
4.2.1. Units: Value/meta-value pairs . 30

4.3. Facets: Slot meta-information : 33
4.3.1. Domain and Range Facets .33

4.3.2, Cardinality Facet _ 37

4.3.3. Demon Facet ’ 37

4.4, Schemata as Values: Auto-linking 40

5. Schema Relations 43
5.1. User Defined Relations 45
5.1.1. Inheritance-specs .45

5.1.2. Inheritance-specs : 47

5.1.3. Inclusicn-spec 48

5.1.4. Exclusion-spec . _ 49

5.1.5. Elaboration-spec 51

5.1.6. Map-spec 54

5.1.7. Introduction-spec 55

5.2. Creating and Using Relations 57
5.2.1. Creating Relations ' 57

5.2.2. The Relation Compiler- 58

5.2.3. Using Relations 59

5.8. Caching and Dependency Links - B9
5.3.1. Local Specialization of Relations . 61

6. Paths and Inheritance 65
6.1. Paths ‘ 66
6.2. Path Selection 67
6.3. Schema Typing and Relationa! Transitivity 68
6.4. Slot Accessibility . N 69
6.5. Inheritance Algorithm 70

7. Contexts 73
7.1. Using contexts 74

- 8, Altering The SRL Environment 77
8.1. Switches: allow the user to modify the SRL environment 78

9. Error Handling : 81

9.1. The error-handling system 82

PAGEI

10. SRL : Object Programming in SRL +
10.1. Messages and Message Sending
11. SRL Data Base System ’
11.1. Introduction
11.2. DB manipulation
11.83. DB Functions
11.4. Utility Functions
11.5. Global Parameters
Appendix l. Using SRL2
1.1, Initializing SRL2
1.2. System Limitations
Appendix ll. User Commands
Appendix lil. Database Backup System
Appendix IV, Error Messages
Appendix V. System Relations
Appendix VI. History
index '

85
85

288 <

89
90

91
122
91

23
95
97
99

103
107

21 SEPTEMBER 1984 SRL2 MANUAL PAGE It

List of Figures |
 Figure 4-1: The restriction grammar 34
Figure 4-2: The cardinality grammar 37
Figure 6-1: The path grammar 66

PAGE IV

. 21 SEPTEMBER 1984

Schema 2-1:
Schema 2-2;

Schema 2-3:

Schema 2-4:
Schema 4-1:
Schema 4-2:
Schema 4-3:
Schema 4-4:
Schema 4-5:
Schema 4-6:
" Schema 4-7:
Schema 4-8:
Schema 5-1:
Schema 5-2:
Schema 5-3:
Schema 5-4:
Schema 5-5:
Schema 5-6:
Schema 5-7:
Schema 5-8:
Schema 5-9:

Schema 5-10:
Schema 5-11:
Schema 5-12:
Schema 5-13:
Schema 5-14:

Schema 9-1:
Schema 9-2:

Schema 10-1:

SRL2 MANUAL

List of Schemata

The mammal schema

The mammal schéma with NURSING-METHOD slot filled with the value

"breast."

In the mammal schema, the value "breast" has a meta-value that contains

the CREATOR slot, which has the value "M.Fox."
The NURSING-METHOD slot has a facet called range.
The value schema

The siot schema

The dog schema with a cardinality restriction

The demon schema

The fido schema with "mood-demon™ and the mood-demon schema

How inverse relations connect schemata
The inverse of the HAS-WINGS slot
The inverse of the HAS-COLOR slot
A system-generated inverse relation
The relation schema
The inheritance-spec schema
The inclusion-spec schema
The exclusion-spec schema
The walls-ex-spec :
The elaboration-spec schema
The dog-elab-spec
The dog schema with elaborated slots
The meta-slot of the LEFT-FRONT-LEG slot
The map-spec schema
The toy-map-spec
The introduction-spec schema
The inherited value "4" is copied into the dog schema
The SRL-error schema
The error-spec schema
The message schema

PAGEV

10
31

37

39
40
41
4

45,
47

50
51
52
52
53
53
54
55
56
60
82

85

21 SEPTEMBER 1984 SRL2 MANUAL ~ PAGE 1

1. Introduction

The introduction is designed to acquaint the user with SRL+ package. The introduction briefly
explains all the elements of the package, their capabilities, and possibie applications.

PAGE 2

SRL +: AN INTEGRATED KNOWLEDGE ENGINEERING ENVIRONMENT

SRL + is an integrated knowledge representation and problem solving environment for constructing
knowledge-based systems. SRL + functions as a high performance productivity tool for knowledge
engineers and Artificial Intelligence systems developers. The system drastically reduces the effoit
required to build knowledge bases and customize problem solving strategies for specific domain
applications. SRL+ extends the user's capabilities by combining a feature-rich knowledge
representation language with a variety of powerful problem solving techniques. SRL + offers:

e A uniform knowledge representation language with user-definable inheritance relations.
e A logic programming language.
s A rule-based programming language.
o An object-based programming langauge.
e An agenda mechanism.
e Discrete simulation language.
¢ Window/canvas interface.
" e An embedded database ‘for Iar;;;e apbiicé{ibﬁé. |
e 2D and business color graphics.

o A natural language interface.

SRL + is written in Common Lisp, the recognized industry standard. SRL + is based on a proven
experimental prototype, which has been used to solve diverse "real world" problems in a variety of
production environmentis,

SRL +’s Knowledge Representation Facilities

SRL + provides a frame-based language, which is efficient, easy to use, and suitable for both smail
and large applications. The schema is the basic representation unit in SRL+. The schema is a

symbolic representation of a concept such as an object, process, or control strategy. The schema has
siots and values that store attitbutive, structural, and relational information about the concept. The
relations in a schema network allow one schema to inherit information from other schemata.

User defined relations and inheritance semantics: SRL+ provides a set of pre-determined

21 SEPTEMBER 1984 SRL2 MANUAL PAGE3

relations to perform inheritance, but also permits users to create their own relations and inheritance
. semantics. By defining their own relations, users can construct schemata and relations that closely
match the domain (e.g., "revision-of", “son-of", etc.). Consequently, the complexity of mapping

domain knowledge into a knowledge base is reduced.

Meta-knowledge representation: Meta-information can be associated with any part of a schema
- the schema itself, its slots, or values. Meta- knowledge provides information about the creation of

“the schema, slot or value (e.g, when, where, how, and why it was created).

User-defined depéndency relations: The user can provide SRL+ with meta-knowledge that
defines how knowledge has been derived or inherited by a schema. »

Procedural attachment: Programs can be associated with slots in the form of demons.

User-controlled search: Paths enable the user to control the way inheritance search is performed.
Paths allow the user to specify which schemata and relations may be searched during inheritance.

Error-handling: The integrated schema-based error handling facility permits the user to define how
the system reacis to errors,

Inference Strategies

Knowledge-based systems have employed a variety of techniques to solve some real world problems.
Yet no single technique has proven adequate. SRL + offers the user a powerfut set of problem solving
technigues that may be combined in one application. Each technique is defined by schemata and
integrated with the SRL + representation language.

Integrated production rule interpretor: Production rules are represented as schemata, and are
matched against schemata in the knowledge base. Both forward and backward chaining control
strategies may be used. The rule-based programming of SRL + is fully explained in the SRLP

document.

Integrated logic programming environment: The system combines the modus ponens
inferencing used in logic programming with representation power SRL +. The inheritance mechanism
provides default reasoning not available in other logic programming environments. Logic
programming is further described in the SRL,, document.

Integrated object programming language: This problem solving tool supports the message-

PAGE 4

sending paradigm for invoking procedures. Objects are represented as schemata that use the SRL
inheritance mechanism to retrieve procedures. Procedures executed in reaction to messages may be
logic programs, rules, or Lisp functions {see chapter 10.) ‘

Multi-queue event manager: A mutli-queue event manager enables the user to schedule events to
occur in a simulated or normal operating mode. Symbolic event-based simulations of complex real-
world processes may be implemented using this mechanism. The multi-queue e\(ent manager is
explained in the SRL, documentation. ' - | |

System Building Tools
Multi-window/canvas interface: Schemata for windows, displays, and canvases are instantiated
to build interfaces with mousc input. This wide bandwidth interface enables the user to view and edit
schemata and schema networks simultaneously. The window/canvas interface is described in the
SRL,, document.

Schema-driven command system: Command interfaces are easy to build using hierarchical
command system that includes spelling correction, built-in help facilities, and a standard command

library.

“2D and business color graphics: A CORE-based graphics package jets the user construct 2D
graphic displays. Business graphics are included in the package. SRL +’s graphic cpabilities are
described in the SRL documentation.

Naturai 1ahguage interface: An interface based on the PLUME natural language parser allows the
user to query the knowledge base, edit, and update factual and procedural knowledge represented as
schemata. The interface can also be used to issue commands to the application system. The natural
language interface is explained in the SRL,, document. ’

Other Features

Integrated database system: A multi-user database system is provided to store schemata.
Schemata that are used frequently are cached in memory. The database system is detailed in the
SRL,; documentation. ‘ '

Version Management: Using the context mechanism, users can create different versions of the

same model.

21 SEPTEMBER 1984 SRL2 MANUAL PAGES

Operating Environments

SRL + is implemented in Common Lisp, and runs on the Carnegie Group Knowledge Engineering
Waorkstation, Digital Equipment Corporation VAX/VMS computers, and the Symbolics 3600. SRL + is
also impiemented in Franz Lisp, and runs under the UNIX operating system on the VAX. In the future,
SAL + will be available on a wide spectrum of machines and operating systems.

Training _
Training and support services are provided to each SRL + purchaser. An intensive, two-week, hands-
on tutorial help users become proficient in developing knowledge-based programs using the SRL +

package.

Applications
The SRL + prototype has been employed in a range of applications including:
1. Callisto: a project management system which focuses on the semantic representation of

activities and production configurations (Fox, Greenberg, & Sathi, 1984).

2 INET™: A corporate distribution analysis system which models and simulates a
corporation’s manufacturing, distribution, and sales organization (Reddy & Fox, 1983).

3. 1S1S: A production management system which models, schedules,and monitors activities
(Fox, 1983; Fox & Smith, 1984). : .

4, Rome: A quantitiative reasoning system for long range planning (Kosy et al:, 1983; Kosy
& Wise, 1984).

5. PDS: A rule-based architecture for the seﬁsor-based diagnosis bf physical processes
(Fox-et al., 1983).

PAGE 6

21 SEPTEMBER 1984 SRL2 MANUAL PAGE7

2. Language Overview

This chapter provides a basic overview of SRL’s components with a few simple examples and
analogies to help understand the concepts involved in the language. Each component is described
more fully in the appropriate chapter. It is recommended that the user read this chapter for
comprehension and definition of terms before proceeding.

PAGES

The Schema: A way of representing information

In SRL, the schema is a way of representing information, just as words are a way of representing
information. Words represent information by symbolizing the properties defining an object, process,
or concept. The word "photograph" stands for the properties that define a photograph, e.g. paper,
rectangular, image, glossy, etc. When a single word is used, all these properties (information) are
communicated. Instead of words, SRL uses the schema to symbolize an object, process, or concept.
The schema symbolizing the concept of a person might be called the person schema.

Slots and Values: Describe and structure information contained in a
concept

A schema represents a whole concept, which is composed of one or more properties or attributes. ’

The schema has slots and values that represent the attributes comprising a concept. For example, the
concept of a person might include attributes like hair color and height. Thus, the person schema
would have a HAIR-COLOR and HEIGHT slot.

Slots and values are a means of representing the attributes, structural, and relational information
embodied in the concept the schema represents. For example the cbncept of a person might include
the attributes hair-color and height. Thus, the person schema would have a HAIR-COLOR and a HEIGHT
slot. Slots are represeﬁted by strings like "hair-color" and "height."

Slots are filled with values that describe the attribute the slot stands for. For instance, the hair-color
slot could have the value "brown." Slots can have more than one value. If the person schema has a
PETS slot, it could be filled with the values "cat,” "dog," and "fish."

While words and schemata are alike because both symbolize concepts, the schema surpasses the

word by structuring the information it represents. Slots and values order a concept’s attributes; a slot

represents an att‘rvibute belonging to a concept, and the value describes the atiribute. Words
symbolize concepts without organizing their properties.

Printing a schema: What does it look like?

Physically, a schema is composed of a schema name (printed in the bold font), and a set of slots
(printed in small caps). A schema is always enclosed by double braces, with its name appearing at
the top of the display. The following example depicts the mammal schema which has two slots,
NURSING-METHOD and BIRTH-PROCESS.

21 SEPTEMBER 1984 , SRL2 MANUAL PAGE S

{{ mammal
NURSING-METHOD:
BIRTH-PROCESS: i

Schema 2-1: The mammal schema

Slots can have values that are any lisp expression. Values are placed next to the slot they fill and
encased in quotation marks. In the mammal schema below, the NURSING-METHOD slot has a value

"breast."”

{{ mammal
NURSING-METHOD: "breast"
BIRTH-PROCESS: }}

Schema 2.2: The mammal schema with NURSING-METHOD slot filled with the
value "breast."

Meta-information: Provides additional information about a schema,
slot, or value

In a paper, book, or article, footnotes provide additional information about a point being made. The
notes may expand on the assertion, or tell a reader where to look for further explanantion. Similarly,
 meta-information provides information about schemata, slots, and values.

Meta-information provides information about the creation of schema, slot, or value, such as how,
when, where, or why it was created. Any part of a schema may have meta-information associated with
it -- the schema itself, slots within the schema, and values of a slot.

Meta-information is represented as a schema, and may be "attached" to the part of the schema it has
information about, just as numbers attach footnotes to the paragraph they explain. When the schema
representing meta-information is "attached" to the original schema, it is referred to as a meta-

schema. When attached to the slot, the schema representing meta-information is called a meta-slot.

If "attached" to a value, the meta-information schema is known as a meta-value.

The slots of a meta-schema, meta-slot, or meta-value are printed in italics, and indented beneath the
schema, slot, or value they are attached to. In the example below, the CREATOR slot and the value "M.

PAGE 10

Fox" are indented beneath the value "breast." This means the CREATOR slot with the value "M. Fox"

are in the meta-value (meta-information schema attached to a value) of "breast.”

{{ mammat:
NURSING-METHOD: “breast”
creator: "M.Fox" }}

Schema 2-3: In the mammal schema, the value "breast” has a meta-value that
contains the CREATOR slot, which has the value "M.Fox."

A schema representing meta-information can have slots just like a schema that symbolizes a concept.
The slots of a meta-slot (a meta-information schema attached to a slot) are called facets. The term
facet is introduced due to the frequent use of the slots of meta-slots. (see section 4.3). In the schema
below, the NURSING«METHOD‘ slot has a facet called range. In other words, the NURSING-METHOD slot

ha3 a meta-slot which contains a range siot.

{{ mammal
NURSING-METHOD: "breast"”
range: '
BIRTH-PROCESS: }}

Schema 2-4: The NURSING-METHOD slot has a facet called range.

SRL has four pre-determined facets: domain, range, cardinality, and has-demon. The domain facet is
filled with information about the slots a schema can hold. The range facet contains information about
the values that may fil a slot, and the cardinality facet holds the number of values a slot can have. The
"~ has-demon facet is filled with functiobns or-programs that execute after certain SRL commands are
called.

Inheritance: A means for a schema to get information from other
schemata

A schema is a way of representing information, meta-knowledge supplies additional information about '

a schema and its parts, and inheritance is a means for a schema to receive information from other
schemata.

A schema inherits information via its relations. A relation is a special kind of slot that connects two

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 11

schemata, and, at the same time, allows a schema to get information from other schemata.

Inheritance is always uni-directional; meaning when two schemata are joined by a relation, only one
can inherit information. In this sense, SRL’s method of inheritance mimics actual human genetic
inheritance. Information flows from schema 1 to schema 2, but not from sciiema 2 to schema 1, just as
children receive genetic traits from their parents, but parents do not inherit traits from their children.
As a resuli, the network of relations connecting schemata is hierarchical, descending from top to

bottom.

SRL has two pre-detemined relations for connecting schemata: 15-A and INSTANCE. The 1S-A relation
indicates the schema is prototypical of a class of objects, concept, processes, etc. The fido schema
is profotypical of the class of dogs; the fido schema would have an is-A slot filled with “dog"
reflecting this relationship. The INSTANCE relation means the schema is physical instantiation of a
class or concept. The fido schema is an INSTANCE of a Scottish Terrier. The important distinction to
remember between I5-A and. INSTANCE is that the INSTANCE relation refers to a physical representation

of a class or concept.

IS-A and INSTANCE relations can be used to form taxonomic hierarchies of schemata. In other words,
the two relations can be used to order classes of concepts, objects, or pracesses. For example,
mammal 1S-A warm-blooded, vertebrate, with a live birth-process. dog iS-A mammal, and fido is an
INSTANCE of a dog. As demonstrated, a series of 1S-A and INSTANCE relations order a class (in this case
rmammals), showing how one member of the class descends from another.

What kind of information does a schema inherit from other schemata? Information stored in slots and
values. For instance, if a user accesses the HANDS slot in the person schema, and the siot does not
currently exist, then SRL checks the person schema’s relations to other schemata. If the person
schema is related to a schema that has a HANDS slot, the value is-inherited by the person schema.
Thus, by way of inheritance, the pérson schema is able to receive information (in the form of a slot)
from another schema. Values are inherited in the same way.

User-defined Relations: Enable control of inheritance

in addition to 1S-A and INSTANCE, SRL has a powerful facility allowing users to define their own
relations. Since relations enable inheritance, the user can directly control what slots and values a
schema inherits by defining his own relations. Relations to control inheritance are constructed with
inheritance specs that specify the information a relation can pass to a schema. At present, SRL has
five inheritance-specs: inclusion-spec, exclusion-spec, elaboration-spec, map-spec, and an

introduction-spec.

PAGE 12

The inclusion-spec determines what information a relation may be passed unchanged by the relation.
The exclusion-spec specifies the information that may not be passed, therefore a user can construct
relations to prevent a schema from inheriting certain information. The elaboration-spec permits a slot
in one schema to be elaborated into several slots in another schema; an ECONOMY slot in the country
schema might be elaborated into the INFLATION, RISE-IN-PRICES, and REAL-WAGE-INCREASE slots in thé
Guatemala schema. Using a relation, a slot or value in one schema can be mapped onto a slot or
value in another schema. For instance, the FRONT-LEGS slot of the mammal schema might be mapped
onto the ARMS slot in the person schema. The introduction spec allows new slots to be added to a

schema when a relation is attached.

Paths: Control inheritance

Paths are an alternative to relations for controlling what slots and values a schema can inherit. We
can think of paths as roads. The roads we take dictate our direction, likewise paths determine the
course of the inheritance search. When a siot is accessed for a value, and the value needs to be
inherited, the search for the value can be controlled by specifying the path at the time the value is
accessed. The path tells the system exactly what schemata and relations can be searched to inherit

the vaiue.

A relation’s transitivity may be specified using the path grammar. Transitivity refers to the paths that
are acceptable for two schemata to l‘)évconsidered related by a particullar relation. Cbntinuing to think
of paths as roads, with regard to transitivity, paths are the roads necessary to consider point A
connected to point B by a specific route.

Paths have one more important function. They can be used to show how two types of schemata can
be combined to form a more complex type. Schema types are deterinined according to a certain rule
(see section 5.3).

Contexts: Permit version management and alternate worlds
reasoning ‘

SRL is equipped with a context facility permitting version management and alternate worlds
A reasoning with SRL models. Each context acts as a virtual copy of a database in which schemata are
stored. In the copy, schemata can be created, modified, and destroyed without altering the original
context. Thus, a user can test simulations, or create a model without affecting the orginal context or
database,

The context mechanism also saves time and space. Contexts are structured as trees, where each
context may inherit the schemata present in its parent context. Because a context can inherit from its

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 13

parent context, only schemata used in the child context are represented there. This avoids copying
schemata that will never be used in the child context, which saves space and time. These savings can
be important when dealing with large databases. '

Error Handling: The system’s response

SRL’s error-handling mechanism is schema-based. When an error occurs, an instance of the
SRL-error schema is génerated. The error schema contains slotsv that hold ihformation about the
error, such as what schema, slot, or value the error is associated with. The schema also has a slot that
corresponds to each type of error. These slot are filled with error-specs that define the system’s
response to the error.

PAGE 14

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 15

3. Schema Manipulation

This chapter explains the functions used to create and manipulate a schema. Examples
demonstrating the functions follow a set format. The command being illustrated is written on the feft
side of the example box. The text explaining the command and what it returns is written on the right

side of the example box.

PAGE 16

3.1. Schemata: How to create, delete, and test their existence

A word symbolizes a concept and a schema symbolizes a concept. The word representing a concept
is often used to name a schema symbolizing the same idea. For instance, the word 'dictionary’ stands
for the concept of a dictionary, and is also used to name the schema repreéenting the notion of a
dictionary, e.g. the dictionary schema. One symbol is used to name another. In SRL, the schema’s
name is known as a string. Every sbhema in the same context must have a unique string. in other
words, one context cannot have two dictionary schemata.? A string referring to a schema is called

the pointer to the schema.

Eventhough a context cannot have iwo schemata with the same name, there is no fimit on the number
of schemata that can be created in a context. Once created, a schema can be deleted. A user can

also test a schema to see it it exists in a particular context.

The schemac command (pronounced “"schema cee") creates a schema. In SRL, commands names
are generally composed of the part of the schema they affect, and a letter abbreviating the action they
perform, eg. schemac creates a schema. In the example below, the schemac command is used to
create the dog schema. Next, the ps function is used to pretty print the dog schema.

1. (schemac "dog") The schemac command creates the dog schema.
"dog" SRL + returns "dog."”
2. (ps "dog") The ps command prints the dog schema.

{{ dog 1}

Below, the schema-p command is used to test whether the dog schema exists, and the schemad

command is called to delete the schema.

Function Summary: schema commands

The words in angle brackets refer to the arguments the function expects. It is not necessary to give
the function all the arguments it can requires. For instance, the schemac command executes without
specifying the context the schema is to be created in.

(schemac <schema> [<context> [<database>}])

RETURNS: a pointer to <schema> in <context>.
SIDE-EFFECT: A schema is created with the name <schema> If the user wants to specify a

2The length of the string is restricted by the database system.

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 17

1. {(schema-p "dog") The schema-p predicate is used to see
' if the dog schema exists.

t The function returns true because the
schema does exist.

2. (schemad "dog") The schemad command deletes the dog schema.

t The function returns t, meaning the
schema existed, and has been deleted.

database, he must also specify a context.

(ps <schema> [{context>]))
RETURNS: t
NOTE: Pretty-prints <schema> as found in <context>. All printing is done to $outport$

(schemad <schema> [<context>])
RETURNS: t if ¢<schema) existed in {context>, otherwise nil.
SIDE-EFFECT: <schema) is deleted from <context>. All slots, values, and any attached meta-
schemata, including those attached to slots and values are also deleted.

{schema-p <schema> [<context>})
RETURNS: t if <schema is a pointer to an object of type schema in <context>, otherwise nil.
NOTE: If {schema> exists in a ancestor context of <context>, then t is also returned.

3.2. Creating and manipulating meta-schemata

Meta-information provides information about the creation of a schema, slot, or value, e.g. how, when,
where, or why it was created. Meta-information is represented as a schema, and is attached to the
pait of the schema it provides information about. When the meta-information schema is attached to a
schema, it is known as a meta-schema. If the meta-information schema is attached to a slot, it called
a meta-slot. !If attached to a vatue, the meta-information schema is known as a meta-value.

A meta-information schema is created and manipulated like any other schema. A tip to the user when
creating a meta-schema: imschemac command does not create a meta-schema; it merely attaches a
meta-schema that has already been created (with schemac) to a schema. Therefore, make sure to
create the meta-schema with schemac before calling mschemac. The following example illustrates
the procedure for creating a meta-schema with the mschemac command. Below, the dog-meta

SCHEMATA: HOW TO CREATE, DELETE, AND TEST THEIR EXISTENCE

PAGE 18

schema is created and attached to the dog schema.

1. (schemac "dog-meta") The dog-meta schema is created.
"dog-meta”

2. {mschemac "dog" "dog-meta") The dog-meta schema is attached to the
"dog-meta” dog schema.

Instead of creating a meta-schema, the user can let the system generate a meta-schema. This is done
with the mschemag command -- g stands for "get." Provided no meta-schema already exists, when
the user types:

(mschemag "car")

SRL will create a meta-schema for the car schema. If a meta-schema already exists, the name of the
meta-schema is returned, '

System generation of meta-schemata is controlled by the switch $meta-schema. The
$meta-schema switch is a variable whose value is the name of a schema specified by the user.
There are two ways to specify the value of $meta-schema: the srl-set function, or the user may
include the value of $meta-schema as an argument in the mschemag function. Sri-set is very similar
to the lisp function, SETQ. To specify the value of the switch using the srl-set function, the user
should type:

(sr1-set "$meta—séhema" "auto-meta"),

where "auto-meta” is the value of $meta-schema. To specify the value when using the mschemag
function the user would type:

(mschemag "car" "auto-meta")

The third argument, "auto-meta," specifies the value of the $meta-schema switch.

As fong as the switch has a non-nil value (in other words, the switch has a schema name as its value),
the system automatically generates a meta-schema when mschemag is called. The switch may be set
to nil, in which case, the system will not generate meta-schemata automatically when mschemag is
used. If the user does not set the value of $meta-schema, the switch is set to the default, schema.

After setting the value of the switch, and calling the mschemag command, the system creates a
meta-schema. The system generated meta-schema is linked to the value of the $meta-schema
switch by an INSTANCE relation. For example, if the value of $meta-schema is "auto-meta," then the
meta-schema generated from the previous example would be linked to "auto-meta" by an instance

relation.

CREATING AND MANIPULATING META-SCHEMATA

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 19

The following example demonstrates how a meta-schema is created by SRL using the mschemag
command. The example also shows how a system-generated meta-schema is made an instance of the
$meta-schema switch, whose value is specified in the mschemag function call. '

1. (schemac "apple") The apple schema is created.

llappleu

2. (mschemag "apple") The apple schema’s system-generated

"1 + 73621434500020784" meta-schema is returned.®

3. (ps "apple") The ps command prints the apple schema.

{{ apple The INSTANCE slot with the value
{instance: schemad }} "scherma” means apple’s

meta-schema is an instance of schema,
which is the value of the $meta-schema
switch.

As with other schemata, meta-schemata can be deleted and the user can test their existence. The
mschema-p command determines if a schema has a meta-schema attached to it. The next example

illustrates the mschema-p command

1, {mschema-p "dog") Mschema-p tests whether a
"dog-meta" schema has a meta-schema. The name of the
meta-schema is returned

2. {mschemag "dog") The mschemag command retrieves the
"dog-meta" _ meta-schema of dog schema.

Function Summary: meta-schema commands

The <generate-switch> argument in the mschemag function refers to the value of the $meta-schema

switch.

(mschemag <schema) [<generate-switch> [<context>]])
RETURNS: the pointer to the meta-schema attached to <schema> if one exists, otherwise nil.
SIDE-EFFECT: If either <generate-switch> or the switch $meta-schema is non-nil and a meta-
schema does not already exist, then one is created and its pointer returned. If {generate-
switch> is the name of a schema, then the meta-schema is made an INSTANCE of that
schema. Otherwise, if $meta-schema is non-nil, the meta-schema is made an INSTANCE

3When the meta-schema is generated by the system, the user does not need to create the meta-schema using the schemac
command before calling a meta-schema command. ' ')

CREATING AND MANIPULATING META-SCHEMATA

PAGE 20

of the schema held as the value of the $meta-schema switch.

(mschemac <schema> <meta-schema> [<context>])
RETURNS: <meta-schema>
SIDE-EFFECT: <meta-schema) is attached to <schema). The previous meta-schema, if not the
same as <meta-schema, is deleted.

(mschemad <schema> [<context>])
RETURNS: t if a meta-schema exists for <schema>, otherwise nil.
SIDE-EFFECT: Deletes the meta-schema associated with <schema.

(mschema-p <schema> [<context>])
RETURNS: the meta-schema associated with <schema if it exists, otherwise nil.
NOTE: Useful for determining if a meta-schema already exists for schema without automatically
generating one via mschemag.

Relevant switches:

$mata-schema: if the setting is non-nil, a meta-schema is generated automatically, and linked to the
schema name held by the switch. The default setting for the switch is schema. If
the switch is set to nil, no meta-schemata are generated by the system.

CREATING AND MANIPULATING META-SCHEMATA

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 21

4. Slots and Values

This chapter details the creation of slots, values, meta-slots, and meta-values, and presents
commands to manipulate them. The chapter also introduces four special facets: domain, range,

cardinality, and has-demon, and explains their functions.

PAGE 22

4.1. Slot Definition

A schema symbolizes a concept, and slots represent and structure the attributes embodied in the
concept. For example, the telephone schema stands for the concept of a telephone, and the slots
CORD and METHOD-OF-DIALING represent the attributes that comprise the notion of a telephone.

Using the slotc command, a slot can be created for any attribute. There is no limit on the number of
slots a schema can have. However, like a schema, a slot must have a unique name; that is, the
telephone schema cannot hold two CORD slots. A slot name is a string such as "method-of-dial.”

Below, the slotc function is used to make a HAS-COLOR slot in the dog schema.

1. (slotc "dog" "has-color") The slotc command creates the HAS-COLOR
"has-color" slot in the dog schema.
2. (ps "dog") The dog schema is printed.
{{ dog
HAS-COLOR! B

After being created, siots may be deleted using the slotd command. But, when a slot is deleted, so is
its value. In other words, if the slotd command is used to delete the Corbp slot, which has a value of 50
feet (meaning the cord is 50 feet long), both CORD and its value are deleted once the command is
called.

With the slote function, a user can determine if a slot currently exists in a schema, or if it may be
inherited from another schema. Let's say the slote command is called to see if the dog schema
contains a BIRTH-PROCESS slot. If dog schema itself does not have the slot, but dog is related to the
mammal schema which has the slot, then slote returns "t" because the slot may be inherited from

the mammat schema.

Slot-all returns a list of slots accessible along a path, in other words, slots that may be inherited
through a particular set of relations. The slot-elab function returns the slots that are an elaboration of
a particlar slot. The slot-elab command is explained and iliustrated later in the manual.

This example demonstrates the slote and slotd functions. Slote tests whether thc STEM slot exists in
the pear schema, and slotd is called to delete the sTeM slot from pear.

1. (schemac "pear") v The pear schema is created.

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 23

llpearll
2. (schemac "stem") The stem schema is created.
"Stem'l
3. (slotc "pear"” "stem") Stem is made a slot in pear.
llstemn
4, (slote "pear"” "stem") Slote tests whether STEM exists or can be
t inherited by the pear schema.
The function relurns "pear” because the
slot exists in peatr.
5. (slotd "pear" "stem") The STEM slot is removed from pear.
"stem"” "stem" is returned because the slot existed

in the pear schema,

Function Summary: slot commands

While it may not be necessary to give a function all the arguments it can take, if the user wants to skip
over one argument, and specify the next, he must type nil in place of the missing argument. For
instance, when using the slote command, the user may not want to specify the context argument. In
this case, he would type:

(slote "dog" "favorite-food" nil (repeat (step "is-a" t) 0 inf))

The argument following nil, (repeat (step "is-a" t) 0 inf), is a path stating that only schemata related to
the dog schema by an "is-a" relation are to be searched for the FAVORITE-FOOD slot. For explanation
of paths see chapter(6).

Other slot manipulation functions include:

(stot <schema) [<context>])
RETURNS: the names of the slots directly defiried in <schema>. v
NOTE: It does not return the names of slots that are accessible by inheritance.

(slote <schema) <slot> [<context> [<path>11])
RETURNS: t if the slot exists in <schema or is accessible by inheritance, otherwise nil.

(stot-all <schemad <path> [<context>]) :
RETURNS: a list of slots accessible along the path specification (see section 6.1 for a description
of paths}).

(stotc <schemad <slot> | <context>)
RETURNS: <slot>

SLOT DEFINITION

PAGE 24

SIDE-EFFECT: Creates a <slot> slot in <schemad. If <slot> is a relation, then it is noted by the
system for use for inheritance. (See section 4.4)

NOTE: If the $restrict switch is t, then <schema> is lested to see if it satisfies the domain facet
restriction of <slot>. (See section 4.3.1)

{(stotd (schemad <slot> [<context>])
RETURNS: <slot> if {slot> existed in <schema>, otherwise nil.
SIDE-EFFECT: Deletes the <slot> slot from <schema> and the attached meta-slot. In addition, the
values of <slot> and their meta-values are deleted.

(slot-elab <schema) <slot> [<context> [<path>]])
RETURNS: the slots in <schema) that are elaborations of <slot>. (See section 5.1.5).

(slot-unlab <schema> <slot> [<context> [<path>]])
RETURNS: the slot of which <slot> is an elaboration.

4.1.1. Meta-slots: Creating and accessing them

Meta-information about a slot is represented as a schema. The meta-information schema attached to
a slot is called a meta-slot. The mslotc command attaches a meta-slot to a slot. However, just like the
mschemac command, the user must first create the meta-slot with the schemac command before
calling msiotc. How can a meta-slot be created with schemac? Because the meta-slot is actually a
schema representing meta-information about a siot. The schemac command creates the schema
representing meta-information; mslotc attaches it to a slot.

The example below illustrates the procedure for creating a meta-slot with the mslotc command.

1.(schemac "ears") ‘ The ears schema is created.
|Iears|l

2.(slotc "dog" "ears") : The ears schema is made a slot of
"ears" the dog schema.

3.{schemac "lopsided")~r The lopsided schema is created.
"jopsided"

4.(mslotc "dog" "ears" “lopsnded") The lopsided schema is made a
"lopsided" meta-siot of the EARS sfot.

As with the meta-schema, the user can let the system generate a meta-slot instsad of creating one '_

SL.OT DEFINITION

21 SEPTEMBER 1984 SRL2 MANUAL. PAGE 25

himself. To do this, the user calls the mslotg command. System creation of meta-slots is regulated by
the meta-slot switch. $meta-slot operates identically to the $meta-schema switch; $meta-slotis
a variable whose value is a schema name which may be specified by the user. The value of the
$meta-slot switch is set the same way the $meta-schema switch is set, with the srl-set function.or

when the mslotg command is used {see p.18.)

If the switch has a non-nil value, the system will generate a meta-slot whenever mslotg is called. If the
user does not give the variable a value, the switch is set to hold the slot schema as a default. The siot
schema is described later in this chapter.

When a meta-slot is generated by SRL, it is linked to the value of $meta-slot switch by an INSTANCE
retation. If the user gives the meta-slot switch a value of height-meta, the meta-slot generated by
the system will be an instance of this schema. '

The next example demonstrates how the system generates a meta-slot, and how itis connected to the
value of $meta-slot switch. '

1. {(schemac "person”)
"person”

The person schema is created.

2. (shemac "height") The height schema is created.

3. (slotc "person” "height")
"height"

4, {mslotg "person™ "height" "height-meta")
"3+ 2670269573"

CEA

5. {ps "person")

{{ person
HEIGHT :
instance: "height"]
{domain: “person"]}
slot: "height"]} 1}

The height schema is made a slot
in the person schema.

The mslotg command is used

to generate a meta-slot for the HEIGHT

slot. The value of the $meta-slot switch

is specified by the argument "height-meta”.

The person schema is pretty-printed.
The HEIGHT slot’s meta-slot is

an instance of "height,” which is the
value of $meta-slot switch.

Function Summary: meta-slot commands

(mslotg <schema> <slot> [<generate-switch> [<contex>1])
RETURNS: the pointer to the meta-slot associated with the <siot> slot of <schema> if one exists,

otherwise nil,

SIDE-EFFECT: If <generate-switch> or the switch $meta-slot is non-nil, and a meta-slot does not

SLOT DEFINITION

PAGE 26

already exist, one is created. The meta-slot is linked to the schema that corresponds to
the name of the slot the meta-siot holds information about. If there is no schema that
corresponds to the name of the slot, one is created. If <generate-switch> holds the name
of a schema, then the schema representing the s'ot to which the meta-slot is attached is
made an instance of the schema held in <generate switch>. Otherwise, if $meta-slot is
non-nil, the newly created schema is linked to the switch by an Is-A relation.

{mslotc <schema> <slot> <meta-slot> [<context>])
RETURNS: <meta-slot>
SIDE-EFFECT: Attaches the <meta-slot> to <slot>. If a meta-siot is already attached, and is not
equal to <meta-slot>, the previous meta-slot is deleted.

(mslotd <schema> <slot> [<contex>])
RETURNS: Returns the meta-slot associated with <slot> in <schema> if one exists, otherwise nil.
SIDE-EFFECT: Deletes the meta-slot associated with <slot> of <schemad, if one exists.

(msiot-p <schema> <slot> [<context>])
RETURNS: Returns the meta-slot associated with <slot> of <schema if it exists, otherwise nil.
NOTE: Useful for determining if a meta-slot already exists for slot without automatically generating
one via mslotg.

Relevant switches:

$meta-slot: if the setting is non-nil, a meta-slot is generated automatically, and linked to the schema
name held by the switch. If the switch is set to nil, no meta-slots are generated by
the system.

4.2. Value Definition

Siots define attributes of a schema. Recalling the last example, the HEIGHT slot represents the height
attribute associated with the person schema. Slots can be filled with values which describe an
attribute. For example, the HEIGHT sldt might be filted with the value five feet. The value five feet
describes the height attribute.

Slots may contain a list of values. A value may be any legal lisp object that is not circular. Using
circular constructs can cause unpredictable behavior. Values that are strings have special meaning
in SRL. If a value is a string that corresponds to schema name (in other words, the value itself is a
schema), SRL may perform different actions. Values that are not strings, e.g. nuvmbers, do not receive
special treatment. |

A variety of functions are provided for filling and retrieving values in a sldt. "The valuec1 function
creates the first value in a siot. Valuec creates any value for a slot; the value does not necessarily

SLOT DEFINITION

21 SEPTEMBER 1984 , SRL2 MANUAL PAGE 27

have to be placed in the first position of the slot, as is the case with valuec1. When a valuect or valuec
command is used to create a new value for a slot, all previous values are removed from that slot.

Below, the valuect command is used to fill HAS-COLOR slot in dog with the single value "brown," then
the same slut is filled with a new value.

7. {(valuec1 "dog" "has-color” "brown") "Brown" is made the first value
"brown" in the dog schema.
8. (ps "dog") The dog schema is printed with the new value.
{{ dog
HAS-COLOR: "brown" }}
9. (valuecl "dog" "has-color” "tan") Another value is created for the
"tan" HAS-COLOR slof.
10.(ps "dog") The dog schema is printed with the new value "tan
{{ dog The original value "brown" has been destroyed
HAS-COLOR: "tan" }} and replaced with "tan."

SRL has a valuecn command allowing user to specify where a value should be placed in a slot. The
"n" in the valuecn command corresponds to the value’s position in the slot. Say the user wants to
insert a value in the third position of a slot, he would simply type:

(valuecn "dog" "has-color" "spotted" 3)

The 3 at the end of the function call indicates the value "spotted" should be placed in the slot's third
position.

The valuecn function may aiso be used to insert a value bewteen to vaiues. If a slot has three values,
and the user wants to insert a value between the values in the first and second position, he would
type:

(valuecn "dog" “"has-color" "white" 2),

and "white" would be placed in the second position accordingly. Contrary to valuec and valuec,
valuecn does not delete previous values. Instead, the value already in the position to be filied by the
new value is moved over one position. For example, the values in the second, before "white" was
inserted, is moved over to the third position.

in addition to valuec commands (valuect, valuec, valuecn), the valuea commands can be used to
values in slots. The valuea commands are similar to valuecn because they do not delete previous

VALUE DEFINITION

PAGE 28

values when adding a new one. Valueal adds a value to the values already present. Valuea adds a list
of values to the values in the slot. A list of values is denoted: '(a b ¢ d), where a, b, ¢, and d are

elements of a list. The valuea commands are demonstrated below.

1. (schemac "coat") The coat schema is created.
l!coatl!

2. (stotc "dog" "coat") The coat schema is made a
"coat" slot in the dog schema.

3. (valueat "dog" "coat" "short—haired") The value "short-haired" is
"short-haired” - added to the COAT slot.

4. (valuea "dog" "coat" '(spotted biack white)) A list of values is

{spotted black white) added to the value “short-haired" in the
COAT slot.

5. {ps "dog") The dog schema is prettyiprinted.

{{ dog

COAT: "short-haired" spotted black white }}

SRL provides an assortment of other functions for manipulating values. To delete a value, the user
calls the valued command. Valueg retrieves all the values a slot contains. Values may be deleted and
retrieved selectively; the user can specify a certain value to delete or retrieve, e.g. the value in the
second position of the siot. The value-sort function orders values according to a predicate. Here, the
noticn of a predicate is identical to a LISP predibate, which is a "question-answering function,” that
returns t or nil.* if the predicate returns for value 1, value 1 can precede value 2, or vice-

versa.

Generally, slots may not be filled if 'they do not exist in the schema.® Because the
FAVORITE-FOOD slot does not exist in the dog schema, it cannot be filled with the value
mailmen. However, slots and their values may be inherited from other schemata. (This is
discussed at length in chapter 5. If the slot cannot be inherited, the filling command fails and an

error is generated. See chapter 9 for information on error handling.

4Touretsky, p.16

5See section 9 on error-handling for how to by-pass this restriction.

VALUE DEFINITION

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 29

Function Summary: value commands

The following functions define and access slot values. Thev do not copy lisp objects which are the
values. The lisp objects passed to these functions are the actual vaiues stored in the schemata.
Similarly, the lisp objects retrieved by these functions are the values stored in the schemata. If
performing destructive operations on the objects, it is advisable to work with copies of the values
returned by these functions.

(valuec <schema> <slot> <value-list> [<context> [<path> [<db-switch>]] D
RETURNS: a list of pointers to the units created for the elements of <value-list>.
SIDE-EFFECT: Fills the value of <slot> with <value-list> and removes the previous vaiues of the slot,
and deletes their meta-values.

(valuec1 <schema <slot> <value> [<context> [<path> [<db-switch>]]])
’ RETURNS: a pointer to the unit created for <value>.
SIDE-EFFECT: Fills the value of <slot> with the single <value>, and removes the previous values of
the slot, including their meta-values.
NOTE: like valuec, but only takes a single value.

(valuecn <schema> <slot> <value> <position> [<context> [<path> [<db-switch> 11D
RETURNS: Inserts <value> in {position> in the slot.

(valuea <schema) <slot> <value-list> [<context> [<path> [{db-switch>]])
RETURNS: a list of pointers to the units created for the elements of <value-lisD.
SIDE-EFFECT: Adds the list of values to the end of the existing vaiues of <slot>. !f the slot is empty,
inheritance is performed before adding.

(valuea1 <schema) <slot> <value> [<context> [<path> [<db-switch>]]1)
RETURNS: the unit created for <value>,
NOTE: Like valuea, but takes a singie value as an argument.

(valuez <schema> <slot> [<context> [<db-switch>]])
RETURNS: t if the command deleted values from the slot, otherwise nil.
SIDE-EFFECT: Removes all values in the slot, and deletes any attached meta-values.

(valued <schema> <slot> <value> [<context> [<path> [<db-switch>]11)
RETURNS: t if the command deleted a value from the slot, otherwise nil.
SIDE-EFFECT: Removes all values equal to <value> in the <slot> slot, and deletes
any attached meta-values.

(valuedq <schema> <slot> <value> [<context> [<path> [<db-switch>] 1D
RETURNS: t if the command deleted a value from the slot, otherwise nil.
SIDE-EFFECT: Removes all values equal to <value> in the <slot> slot, and deletes any attached

VALUE DEFINITION

PAGE 30

meta-values.
NOTE: like valued but uses eq instead of equal.

(valuedn <schema) <slot> <position> [<context> [<path> [<db-switch>]1])
RETURNS: Deletes the value in <position> from the slot.

(valued-pred <schema> <slot> <predicate> [<context>] [{path> [<db-switch>}11])
RETURNS: t if any values were deleted because of the command, otherwise nil
NOTE: Deletes values from the slot that cause <predicate> to return t. The predicate is passed the
<schema) <slot> <context> and a value.

(valueg <schema> <slot> [<context> [<path> [<db-switch>]11)
RETURNS: the list of values contained in <slo?> in the given {context.

(valuegn <schema <slot> [<context> [<path> [<db-switch>]]])
RETURNS: the first value contained in <slot>.
NOTE: Like valueg, but returns only the first value of the <slot>.

(valuegn <schema <stot> <position> [<context> [<path> [<db-switch>]]1])
RETURNS: Retrieves the value in <position> from the slot.

{value-sort <schema) <slot> <predicate> [{context>])
RETURNS: The list of units associated with the the slot, after sorting. .
NOTE: Sorts the values in the <slot> of <schema) based on predicate. The predicate is passed to
values val? and val/2. It should return a non-nil value if vall can precede val2, If the
predicate returns nil, then val2 will be made to precede vali.

4.2.1. Units: Value/meta-value pairs

Values are literally only half of what fills a slot. The actual fillers of slot are called units. A unitis a
value/meta-value pair. The uvalue commands manipulate units. The difference between uvalue
commands and the value functions (eg valuec, valuea) introduced earlier is that value commands only
return values, whereas uvalue commands return the whole unit, the value/meta-value pair. After a
value command is called, a null meta-value is stripped away from the unit, and only the value is

returned to the user.®

Meta-values may be created by the system or the user. To generate meta-values with SRL, the user

6The null meta-value that is stripped away after a value command is called, is created when the value function is first
executed.

VALUE DEFINITION

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 31

calls the munitg command. Like $meta-schema and $meta-siot, $meta-value isa variable whose
value is a schema name specified by the user. The value of $meta-value is set with the sri-set
function or when the munitg command is called (see p.18.)

If the switch has a non-nit setting, a meta-value is automatically generated by the system when the
user calls munitg. The default setting is the value schema. The value schema and its slots are
described below.

{{ value
CREATOR:
CREATION-TIME: }}

Schema 4-1: The value schema

creator: Person or process that created the value.

creation-time: The time when the value was placed in the slot,

When the meta-value is created, it is linked to the $meta-value switch by an INSTANCE relation. If the
value of $meta-value is value schema, a system génerated meta-vaiue would be linked to the value
schema by an INSTANCE relation. This INSTANCE relation makes the slots in the value schema
accessible in the meta-value generated by the system.

Below, several of the commands that access units and meta-values are demonstrated.

Function Summary: unit commands

The following commands enabie the user to access units. A meta-vaiue is manipuiated just like any
‘other schema.
(uvalued-pred <schema> <slot> <predicate> [<context>])

RETURNS: t if any values were deleted because of the command, otherwise nil

NOTE: Deletes values from the siot that cause <{predicate> to return t. The predicate is passed the
<schema> <{slot> <context> and a unit,

(uvalueg <schema> <slot> [<context> [<path> [<db-switch>]11)

(uvalueg1 <schemad <slot> [<context> [<path> [<db-switch>]1]1)
RETURNS: The first value-unit in <slot> in the given {contex.
NOTE: Like valueg, but returns only the first value unit in the <slot>.

(uvaluegn <schema <slot> <position> [<context> [<path> [<db-switch>] 1]}
RETURNS: Retrieves the <position> unit from the siot.

VALUE DEFINITION

PAGE 32

1.(uvalueg "dog" "has-color")

({}1value| "brown" nil "1 + 935214639221906845" “dog" "has-color"
"$root-context” nil} {|1value| "spotted" nit "2 + 83521463922190684"
"dog" “has-color” "$root-context” nil})

2.(uvaluegn "dog" "has-color" 2)
({Hvalue| "spotted" nil "2+ 93521463922190684" "dog" "has-color"
"$root-context" nil})

3.(setq x (uvaluegn "dog" "has-color" 2)} _
{{1value| "spotted" nil "2 + 93521463922190684" "dog" "has-color"
"$root-context" nil}

The unit of the second position of the HAS-COLOR slot is returned.

The unit contains both the value and the meta-value of the position. The
variable X is set to hold the unit as its value. When the unitg command
is used, which takes the unit as an argument, the entire unit need not
be typed to call the command. X is typed in place of the unit.

4.(unitg x) The value of the unit is returned.
uspotted"

(unitg <value-unit>)

(munitg <value-unit> [{generate-switch> [<context [<database>]]])
NOTE: If either <generate-switchd> or the switch $meta-value is non-nil, and a meta-value does not
already exist, one is created, and its pointer returned. If <generate-switch> is the name of
a schema, then the meta-value is made an INSTANCE of that schema. Otherwise, if $meta-
value is non-nil, the meta-value is made an INSTANCE of the schema held as the value of
the $meta-value switch.

(m unitc <value-unit> {meta-valued)
RETURNS: <meta-value> -

(munitd <value-unit> [<context>])
RETURNS: t :

(munit-p <value-unit>)
NOTE: Useful for determining if a meta-value already exists for a value-unit without automatically
generating one via munitg.

VALUE DEFINITION

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 33 -

Relevant switches:

$meta-value: if the setting is non-nil, a meta-slot is generated automatically, and linked to the
schema name held by the switch. If the switch is set to nil, no meta-values are
generated by the system,

4.3. Facets: Slot meta-information

When a meta-slot is created, it is linked to the $meta-slot switch by an INSTANCE relation. If the user
does not specify the value of the switch, it is set to hold the slot.schema. Because the meta-slot is
related to the slot schema by an INSTANCE relation, the meta-slot can inherit the slots in the slot
schema. The slot schema is displayed below.

{{ slot
RANGE: t
" range: {value-op>
DOMAIN:
range: <schema-op>
CARDINALITY: (O inf)
HAS-DEMON:
range: (type "instance"” "demon")
INVERSE:
HAS-META-VALUE: }}

Schema 4-2: The slot schema

The slots of a meta-slot are called facets. Thus, if a meta-siot is created that is an instance of the slot
schema, that meta-stot’s facets would be the slots in the slot schema.

The first four slots in the slot schema represent the standard facets of SRL. Each facet may have
zero or more values. INVERSE holds the inverse of the slot, eg. the inverse of the BLACK slot might be
the WHITE slot. A slot’s inverse is used in auto-linking schemata (see section 4.4). While users may-
define their own facets, SRL gives the first four facets special meaning when interpreting sfots and
values. '

S

4.3.1. Domain and Range Facets L o
The domain facet is used to specify restrictions on the form and tybe of schemata where slot may
reside. The range facet is used to restrict the values a slot may hold. The restrictions that are the
values of the domain and range facets are like tests. For example, restrictions can be used to test

whether a slot can be created or inherited by a certain schema. If the schema satisfies the restriction,

VALUE DEFINITION

PAGE 34

the slot may be inherited or created . Elements of the restriction grammar can be combined to test
many things about a schema, slot, or value.

The domain and range facets may have only one value, and the value must follow the grammar given
below. Examples using the restriction grammar follow an explanation of the grammar’s terms.

<{schema-op> :: = (meta <{schema-op>) | {slot <slot> <slot-op>) |
(all <slot-op>) | (some <slot-op>) |
(or <schema-op> *) | (and <schema-op> *) |
(type <relation> <schema>) | (pred <functiond}
(not <schema-op>) | <lit> { t’

<slot-op> = (meta <{schema-op>) | (schema <schéma—op>) |
(all <value-op>) | (some <value-opd) | ‘
(or <slot-op>*) | (and <slot-op>*) |
{not <slot-op>) | i | t

<value-op> i = (schema <schema-op>) | (map <value-op§+)]

(all <value-op>) | (some <value-opd) |
{meta <schema-op>) | (pred <function?)
(or <value-op>*) | (and <value-op>*) |
(not <value-op>) | <lit> | t
<range-restriction> i1 = <{value-op>

{domain-restriction> :: = <schema-op>

Figure 4-1: The restriction grammar

e meta: Takes the meta schema associated with the schema, slot, or value, and performs a
test on it. For instance, the meta-schema of a schema might be tested to see if is type
"instance" “"dog." The test fails if there is no meta information (It is automatically created
if the appropriate switch is on).

e slot: Performs the requested test on the slot specified as the <slot> argument. The <§Idt>
is inherited if necessary. The test fails if <slot> does not exist.

7In the restriction grammar, “lit" stands for literal,

‘FACETS: SLOT META-INFORMATION

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 35

o all: Succeeds if every element succeeds. From a schema it tests every slot. From a slot, it
tests every value. From a value, it tests every element of the list that is a value. Note that
the value must be a list.)

s some: The test succeeds if at least one element passes test. Determines elements as all
does.

e or: Succeeds if one test succeeds.
e and: Succeeds if all tests succeed.
. e not: Succeeds if the test fails.

o type: Succeeds if (r-test <current-schema> {relation> <{schema>) succeeds. Fails if
element is not a schema.

o <lit>: Succeeds if the element being tested is equal to <Iit>.
e t: Always succeeds.

e schema: The current element is interpreted as a schema, and the test succeeds when
the test on the schema succeeds. The test fails if the element is not a schema.

¢ map: Map interprets the value as a list of values. The list is mapped onto the tests in the
restriction. The map succeeds if alf of the tests succeed. If the map contains more tests
than the value has elements, nil is used in place of the missing value elements. If the
value contains more elements than the map contains tests, the extra value elements are
ignored.

e pred:; The predicate provides a means for the user to perform tests that the restriction
grammar does not cover. For instance, the value of the slot STREET-NUMBER must be a
positive integer. Each <function) takes an element and a context as parameters, and
returns t if the element succeeds the test within the context.

The $restrict switch controls whether the system checks for domain and range restrictions. if the

switch is set to t, the system checks for restrictions. The switch default setting is nil.

Domain and range restrictions may be blaced in the domain and range facets respectively, or they
can be inherited. For example, say has-color were defined as a relation, Relations can have domain
and range restrictions. The meta-slot on the HAS-COLOR slot of german-shepherd would be linked,
via an INSTANCE relation, to the schema for the has-color relation. domain and range restrictions
from the has-color relation are inherited by this link, and used in the context of the HAs-CoLOR slot of
german-shepherd. If the inherited domain restriction does not allow the HAS-COLOR slot to be
placed in the german-shepherd schema, adding the slot will result in an error.

inherited range restrictions behave simitarly to inherited domain restrictions. Further discussion of

FACETS: SLOT META-INFORMATION

PAGE 36

The following examples illustrate how the, (es!riction grammar’s terms can
be combined to test different things about a schema, slot, or value.

(some "f00") This is an example of a domain restriction.
The restriction returns true if the FOO slot
exists in the schema being tested.

(meta (slot "creator" This restriction is used to test a
(some (or "peter" "dave")})) ‘ meta-information schema. The test
succeeds if the meta-information schema has a
CREATOR slot, which is filled with some
value, either "peter"” or "dave."

(map (pred (lambda (val context) This restriction tests a value.
(<5 val))) The value satistfies the restriction
(pred (lambda (val context) if the value is a list whose first
(>10val)))) - element is less than 5, and second

element is greater than 10.

{{pet-of . This is a domain restriction for the
domain: {(or {type "is-a" "cat") PET-OF slot. The sfot may only
(and (type "is-a" "dog")) be placed in a schema which is
(not (some "guards")))) type “is-a” "cat" or "is-a" "dog,"
' 1

and does not have a GUARDS slot.

domain and range restriction of relations can be found in chapter 5.

in addition to placing restrictions in domain and range facets or inheriting them, the user can call the
restriction-test function to check for restrictions themselves. The restriction-test function is displayed
below.

(restriction-test <restriction> <schema> [<slot> [{value-list> [<context>}]])

RETURNS: { if the restriction test succeeds, nil otherwise.

NOTE; This function determines the type of restriction test based on the number of parameters
given, If no <slot> or <value-list> is provided, then the restriction is performed on the
schema. If no <value-list> is provided, then the restriction-test is performed on the slot. If
there is a <vatue-list), then the restriction-test is performed on each element of the list of
values. It succeeds if each value passes the restriction-test. nil may be used for any

~ parameter that is to be skipped.

FACETS: SLOT META-INFORMATION

21 SEPTEMBER 1984 SRL2 MANUAL . PAGE 37

4.3.2. Cardinality Facet

The cardinality facet is used to restrict the number of values a slot may contain. The value of the
cardinality facet describes the minimum and maximum number of values allowed. inf means a slot
may contain any number of values. Cardinality checking is controlled by the $cardinality switch.

{cardinatlity>:: = (<min> <max>)
<min>: = <>0 nwnber> _
{max>:: = <number> | inf

Figure 4-2: The cardinality grammar

In the example below, the NAME of dog has a cardinality restriction of (0 1). This means that the slot
may have zero or one value, but no more, An attempt to add more than one value to the siot will result
in an error.

{{ dog
NAME:
cardinality: (0 1) }}

Schema 4-3: The dog schema with a cardinality restriction

4.3.3. Demon Facet

Reactive processing is provided by the specification and attachment of a demon schema to any slot in
a schema. The purpose of the demon schema is to specify a function, and the conditions under
which it is executed. The demon schema is defined as foliows:

FACETS: SLOT META-INFORMATION

PAGE 38

{{ demon
ACCESS: <access> *
range: (type "1s-A" "SRL access function")
ACCESSOR: :
ACCESS-VALUE:
CURRENT-VALUE:
WHEN:
range: {or before after)
ACTION:
range: <Must be a function definition>
EFFECT:
range: (or alter-value block side-effect) }}

Schema 4-4: The demon schema

A demon may execute before or after access is made, as defined by the WHEN slot. A demon’s action -
is evaluated if the type of access matches the contents of the ACCESs slot. SRL places the name of :
the function performing the access, in the ACCESSOR slot. If the function is called with a value, the
value is placed in the ACCESS-VALUE slot. The current value of the schema and slot is placed in
CURRENT-VALUE (note if the value is inherited and not copied it is still the current value for after
demons). Note: Because the units placed in the ACCESS-VALUE, CURRENT-VALUE, and ACCESSOR are
not copied, the user should not modify them, The contents of the ACTION slot are one or more lambda

expressions or functions whose parameters are:

1. The name of the schema in which the demon resides.
2. The name of the slot in which the demon resides.

3. The name of the demon schema.

A demon ACTION may affect the function access in one of three ways, as specified in the EFFECT slot:

1. side-effect: the execution of the action has no direct affect on the access.

2. alter-value: The value used or returned by the function is altered depending on the type
of demon. If the demon is a before demon, the value used with the function is altered
before the function is executed. If the demon is an after demon, the value returned to the
user is altered.

3. block: A block demon prevents the function called by the user, e.g. valuec, from being
evaluated. For instance, if the user wants a value placed in memory, they must perform
the function themselves, or else the block demon will prevent the value from being stored
in memory. The demon is undefined after the function has executed.

FACETS: SLOT META-INFORMATION

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 39

The AcTION function returns either a list of units or a list of values. SRL will ditferentiate between
them. Because units are meaningless for valued, valuedq, valuedn, and valued-pred, only a list of a
single value will be expected.

Execution of demons is controfled by the $demon switch. A value of t enables the checking and
evaluation of demons attached to slots during slot access. Default is nil.

In the example below, a has-demon facet, filled with "mood-demon,” has been added to the MOOD
slot of fida. The mood-demon schema is also shown. This demon is only interpreted after a valuec
or valuec1 command has been used on the MooD slot in fido. The demon has an effect type of
side-effect, meaning the demon will not aifect the value put into the moob slot of fido, but may cause
some side-effect to take place in the model. When a valuec command is used, the function change-
tail-fn is evaluated, given the parameters "'fido," "MooD," and "mood-demon.” The evaluation

causes the TAIL slot of fido to change to "wagging,” if fido’s mooD slot has been changed to hold -

l'happy" .
{{ fido
MOOD:
has-demon: "mood-demon"
TAIL: B

{{ mood-demon
INSTANCE: "demon”
ACCESS: "valuec" "valuec1"
WHEN: after
ACTION: change-tail-fn
EFFECT: side-elfect }}

(defun change-tail-fn (schema slot demon)

{cond {(equa! (valueg1 demon "current-value") "happy")
(valuec1 schema "tail" "wagging"))))

Schema 4-5: The fido schema with "mood-demon" and the mood-demon schema

Function Summary: commands used with facets

{restriction-test <restriction> {schema> [<slot> [<value-list> { <context>]]11])

RETURNS: t if the restriction test succeeds, nil otherwise.

NOTE: This function determines the type of restriction test based on the number of parameters
given. If no <slot> or <value-list> is provided, then the restriction is performed on the
schema. If no <value-list> is provided, then the restriction-test is performed on the slot. If
there is a {value-list>, then the restriction-test is performed on each element of the list of

FACETS: SLOT META-INFORMATION

PAGE 40

values. It succeeds if each value passes the restriction-test. nil may be used for any
parameter that is to be skipped.

restriction grammar: tests whether a slot or value satisfies a schema's domain and range
restrictions. '
Relevant switches:

$meta-slot: if non-nil, a meta-slot is generated automatically, and linked to the schema name held by
the switch.

$restrict: if the switch is set to t, then domain and range restrictions are checked. If set to nil, they
are ignored.

$demon: If the switch is set t, then demons are evaluated and executed, otherwise demons are
ignored.

4.4. Schemata as Values: Auto-linking

When a siot is given a value thatis a schema, an inverse relation is put in place. The inverse relation
connects the slot and the value filling it by creating the reverse of that slot in the value schema. For
example, suppose the has-color slot's inverse is color-of, and fido contains a HAS-COLOR slot.

Suppose the HAS-COLOR slot is filled with "brown," and that "brown" is also a schema. When the
value "brown" is added to the HAS-COLOR slot of fido, the COLOR-OF slot of brown is also filled with
the value "fido". The name of the inverse relation is taken from the inverse slot of the meta-schema
attached to the slot being filled. ‘

{{ tido
INSTANCE: "dog"
HAS-COLOR: "brown" }}

{{ brown ‘
COLOR-OF: "fido" }}

{{ has-color
INVERSE: "color-of" }}

Schema 4-6: How inverse relations connect schemata

Here is another example of inverse relations. The HAS-WINGS slot, whose inverse is WINGS-OF, is filled
with "feathers," which is a schema, When "feathers” is added to the slot, the feathers schema is
given a WINGS-OF slot that is filled with the value "bird." '

FACETS: SLOT META-INFORMATION

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 41

{{ bird
INSTANCE: "mammal"
HAS-WINGS: "feathers"” }}

{{ feathers
WINGS-OF: "bird" }}

{{ has-wings:
INVERSE: "wings-of" }}

Schema 4-7: The inverse of the HAS-WINGS slot

A slot's inverse is determined when it is first needed. If the information necessary to determine the
inverse of a slot is absent, SRL creates the information. Whenever an inverse link needs to be put in
place, the system takes the inverse from the meta-slot of the slot being filled {with a value that is a
schema), and checks to see if a schema with that name exists. If none exists, one is created. If the
inverse is not specified, it too is created. SRL generates inverses by appending the suffix +inv to the
slot name. The schema associated with the inverse is created, and given an inverse of the original
slot. For instance, if HAS-COLOR had no inverse, its inverse would be HAS-COLOR +INV. The has-color
and has-color + inv schemata would reflect this relationship.

The following would be created if there was no has-color schema.

{{ has-color :
INVERSE: "has-color +inv" }}

{{ has-color +inv
INVERSE: "has-color" }}

{{ brown
HAS-COLOR + INV: "fido" }}

Schema 4-8: The inverse of the HAS-COLOR slot

The system switch $inverse controls whether inverse links are always created, never created, or
created only if the slot is defined as a relation. The switch $inverse has three legal settings: all,
relations, and none. [f the switch is set to all, auto-linking always takes place. If set to none, no
auto-linking takes place. If set to relations, auto-linking is only performed for relations. relations is
the default setting for $inverse.

SCHEMATA AS VALUES: AUTO-LINKING

'PAGE 42

Relevant switches:

$inverse: controis the creation of inverse relations. The switch has threee legal settings: all, none,
: relations.

,

SCHEMATA AS VALUES: AUTO-LINKING

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 43

5. Schema Relations

This chapter explains the workings of inheritance -- how relations connect schemata and how

relations control inheritance.

PAGE 44

A relation is a special kind of slot which connects two schemata. The relation is a passageway that
allows two schemata connected by the relation to inherit information from each other. Two relations
are already defined in SRL: 1s-A and INSTANCE. An is-a relation indicates one schema "is-a" typical
member of a class. The instance relation suggests one schema "is-a" typical member of a class, but
also implies there is a tangible object. ‘

Two schemata are related if one schema appears as the value of a slot in the other schema. The slot
where this value appears is the relation. For example, if the slot, INSTANCE, is added to the fido
schema, and given a value of dog, then fido is related to dog by the INSTANCE relation. The INSTANCE
relatioﬁ indicates that fido is an instance, or a particular examp%é of a dog. Any slot may be used to
form a relation, but only certain relations atiow slots and their values to be inherited between
schemata. The instance relation has been defined to pass all slots and values from the schema that is
the value of the INSTANCE slot to the schema containing the instance slot, e.g. all slots and values
pass from dog to fido.

Inheritance occurs automatically whenever information is needed. If the value of fido's HAS-COLOR
slot is accessed (the actual command is (valueg? "ﬁdo"'"has-color")), first the schema fido is
examined for the value. If no value is found, SRL retrieves relations between fido and other schemata
so the value may be inherited. (In this case there is only one relation, INSTANCE). Next siots of the
related schema (in this example dog) are examined, and the value "brown" is found. The access
function will return "brown" as the result of the query.

{{ fido
INSTANCE: "dog" }}

{{ dog
1S-A: "mammal”
HAS-COLOR: "brown"
INSTANCE + INV: "fido" }}

Schema 5-1: A syétem-generated inverse relation

This is just one example of a relation. There are many relations, varying in which slots and values can
be inherited between schemata. Any slot may be a relation, although the information passed may be

different from another relation. Unless otherwise specified, a relation passes no information. SRL -

gives the user the power to specify the semantics of each relation, determining which slots and values
are inherited. A number of relations are already defined for the user by SRL. These relations are
discussed in Appendix V. Section 5.1 describes how users can create their own relations. it is also

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 45

possible to specialize a relation in each particular use {see section 5.3.1).

5.1. User Defined Relations

One of the most powerful facilities offered by SRL is user definable inheritance relations. Most
knowledge representation languages offer the user a set of relations to meet most needs. However, in
SRL the user can define relations specifically tailored to the domain currently under study. Each
relation is defined by a schema, and is composed of inheritance-specs specified in the schema.
Inheritance-specs are schemata specifying exactly what information can be passed by the relation.
Five kinds of inheritance-specs are currently defined in SRL2: inclusion, exclusion, elaboration, map,
and introduction. The construction of relation schemata and the use of inheritancé-specs are
discussed below,

5.1.1 .'Inhe ritance-specs

For every relation in SRL, a schema with the same name must exist. The schema for each relation
should be linked to the relation schema by a network of 1s-A relations. The relation schema is a
prototype for structuring a schema’s relations. Because the relation is a refinement of the slot
definition, the relation schema is linked to the slot schema by an 1s-A relation. A relation has the
semantics of a slot, but can also inherit slots and values. The relation schema is given below, and
the contents of each of its slots defined.

{{ relation
is-A: "slot"
TRANSITIVITY: nil
range: "must follow path grammar”
INCLUSION:
EXCLUSION:
ELABORATION:
MAP;
INTRODUCTION: }}

Schema 5-2: The relation schema

INVERSE! {Inherited from the slot schema) Every relation has an inverse relation. When a
relation is_defined, an inverse relation is simultaneously defined, relating
schemata in the opposite direction. In the fido example, the dog schema would
automatically acquire an INSTANCE + NV slot, filled with fido (see section 4.4}. 1f no
inverse slot name is given by the user, the system automatically generates a name,
and creates the corresponding schema. TRANSITIVITY:

PAGE 46

Defines the transitivity of the relation (see section 6.3).

INCLUSION: instantiations of inclusion-specs involved in the relation should be placed here.

EXCLUSION: Instantiations of exclusion-specs involved in the relation shouid be placed here.

ELABORATION: Instantiations of elaboration-specs involved in the relation should be placed
here.

MAP: instantiations of map-épecs involved in the relation should be placed here. .

iNTRODUGTION: Instantiations of introduction-specs involved in the relation.

Below is an example of a relation schema pet-of. Its domain is restricted so schemata must be of
type 1s-A dog to have a PET-OF slot. The PET-OF slot's vélue must be of type 15-A person. The relation
has one inclusion-spec named pet-of-incl-spec, which is discussed later. pet-of has an inverse
relation called has-pet. Whenever a PET-OF slot is placed in a schema and given a value, a
corresponding HAS-PET slot is put in the schema indicated by the value, and filled with the original
schema. '

{{ pet-of
1S-A: "refation"
DOMAIN: (type "is-a" "dog")
RANGE: (type "is-a" "person")
INVERSE: "has-pet" :
INCLUSION: "pet-of-incl-spec" }}

Notice a simple hierarchy of relations has been defined. Each relation being is linked to the relation
schema by the Is-A relation. The user may build a hierarchy of any size. It might be interesting to
define a dog-of relation that is related to the pet-of relation by an is-A slot. The relation would have
the same relational properties of the pet-of relation, but could be refined in the case of pets that are
dogs. The inherited relational properties are represented by inheritance-specs, discussed later in this
section. '

Users should be careful on two points, however, when making a hierarchy of relations. First, make

sure that it is not necessary to be able to interpret a certain relation in order to interpret that relation,

For instance, in our dog-of example it was necessary to inherit from the pet-of relation along an is-A

link. What would happen if instead that was another dog-of link? Quickly the system would into’
endless recursion trying to interpret the dog-of relation in order to interpret the dog-of relation!

USER DEFINED RELLATIONS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 47

{{dog-of
DOG-OF: pet-of }}

The second point of caution is understanding the importance of compiling relations (section 5.2.1).
Using relations interpretively is slow, and is especially true when working with a complex hierarchy
relations. Interpreting should only be done during the debugging phase of constructing a relation.
Relations should be compiled as soon possible if reasonable performance is desired.

5.1.2. Inheritance-specs

Inheritance-specs specify what information may be passed between schemata. Five kinds of
inheritance-specs are currently defined in SRL2: inclusion-specs, exclusion-specs, elaboration-
specs, map-specs, and introduction-specs. Each spec is a schema. To attach an inclusion-spec to a
relation, the pointer to the spec must be stored in the relational schema. In the example above, an
inclusion-spec, pet-of-incl-spec, was stored in the INCLUSION slot of the pet-of relation. If this spec
had been stored in the EXCLUSION slot of the schema instead, it would be interpreted as an exclusion-
spec. A description of the inheritance-s.pec schema is given below followed by a description of
each kind of inheritance-spec.

{{ inheritance-spec
is-A + INV: "introduction-spec” "map-spec"” "elaboration-spec”
~ "exclusion-spec" "inclusion-spec”
RANGE: t .
range: "must follow <value-op> grammar"
DOMAIN: t
range: "must follow <schema-op> grammar"
CONDITION: t
range: (or t<{predicate>)
SLOT-DEPENDENCY: ‘
range: (schema (type "is-a" "slot"))
VALUE-DEPENDENCY:
range: (schema (type "is-a" "slot")) }}

Schema 5-3: The inheritance-spec schema

The DOMAIN, RANGE and CONDITION slots are used in each inheritance-spec. The
SLOT-DEPENDENCY, and VALUE-DEPENDENCY specs are included in most specs. A description of how
the specs are used is given below.

USER DEFINED RELATIONS

PAGE 48

The DOMAIN, RANGE and CONDITION slots are used by each inheritance-spec. The
SLOT-DEPENDENCY, and VALUE-DEPENDENCY specs are used by most specs. A description of how they
are used is given below.

DOMAIN and RANGE: A relation may use many inheritance-specs. Each spec applies only in some
instances of the relation. For the inheritance-spec to apply, two criteria must be
met. The <domain> schema of the relation must pass the test in the bomain slot.
The schema containing to be inherited from ({(the value in the <relation>
slot)(range) must pass the test specified in the RANGE slot. if these two criteria are
met, the spec applies in this particular instance of the relation.

CONDITION: The condition specification applies to the whole spec. [f the condition is true, then the
' spec can be used. The contents of this slot are a lambda expression (or schema
that can be interpreted as a procedure) with the following parameters: <domain
schema of the refation>, <range schema of the relation>, and <inheritance spec
schemab.

SLOT-DEPENDENCY: Used when slots are inherited across relations. The meta-slot of the newly
inherited slot is linked to the meta-slot of the original siot by the relation stored in
the SLOT-DEPENDENCY slot.

VALUE-DEPENDENCY: Used when values are inherited across relations. The inherited meta-values are

linked to the original meta-values by the relation held in the VALUE-DEPENDENCY
slot. : '

5.1.3. Inclusion-spec

An inclusion-spec specifies what information can be passed unchanged by the relation. The
inclusion-spec is the most simple and easy to use. The inclusion-spec restricts the inheritance of
values and slots. A spec may allow the slot to be inherited, but not the value. If the slot may not be
inherited across the speg, the restriction on the value will be ignored. A template of an inclusion-spec
appears below, followed by a description of each of its slots.

{{ inclusion-spec

1S-A; "inheritance-spec"
SLOT-DEPENDENCY: "included-from"
VALUE-DEPENDENCY: "included-from"
SLOT-RESTRICTION: t

range: "must follow <schema-op> grammar"
VALUE-RESTRICTION:t

range: "must follow <value-op> grammar" }}

Schema 5-4: The inclusion-spec schema

L3

USER DEFINED RELATIONS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 49

The definition of the slots not inherited from the inheritance-spec schema are:

SLOT-RESTRICTION: Specifies which slots may be inherited across the spec. This uses the restriction
grammar that starts with the schema, since the slot may not exist when the spec is
evaluated.

VALUE-RESTRICTION: Specifies the values that may be included. The restriction specification for
values is used.

The SLOT-DEPENDENCY and VALUE-DEPENDENCY slots are inherited from inheritance-specs, and used to
specify the relations for linking meta information. The restrictions (see figure 4-1) allow specification
of some class of slots or values for inheritance. Generally these restrictions determine whether a slot
or value is in the set specified by the restriction.

Since the domain and range slots are empty, the defauit value of all is inherited from the
inheritance-spec schema from both slots.” This means any schema taking part in the pet-of
relation (according to the DOMAIN and RANGE slots in the pet-of schema) may use this inclusion-spec
for performing inheritance. For example, if the RANGE slot had been filled with (or "jones" "smith"}),
only those schemata related by the pet-of relation with the RANGE "jones" or "smith" could use this
inclusion-spec to perform inheritance. There might be another inclusion-spec with range (type
“is-a" "person”) that would apply in another instance, etc.

The pet-of inclusion-spéc is created by typing:

1.(mk-schema "pet-of-incl-spec" ("instance" "inclusion-spec™)
("slot-restriction" {type "is-a" "address")))
"pet-of-incl-spec”

{{ pet-of-incl-spec
INSTANCE: "inclusion-spec"”
SLOT-RESTRICTION: (type "is-a" "address") }}

5.1.4. Exclusion-spec

The exclusion-spec is analogous to the inclusion-spec but specifies what slots and/or values cannot
be inherited. If the inclusion-spec from the revious example, pet-of-incl-spec, had been stored in the
EXCLUSION slot of pet-of instead of the INCLUSION slot, then exactly those things that were passed by
the relation before would explicitly not be passed by the new relation. Any slots or values that pass
théir corresponding restrictions may not be inherited across the exclusion-spec. The value restriction
only applies if the slot restriciton fails.)

USER DEFINED RELATIONS

PAGE S0

Exclusion-specs are evaluated before inclusion-specs. If an exclusion-spec denies inheritance of
some information, but an inclusion-spec allows inheritance of the same information, the information
cannot be inherited. Exclusion specs are convenient for blocking inheritance of a slot or value, when
a relation has an elaborate structure of inheritance specs.

Building exclusion-specs follows directly from inclusion-specs.

{{ exclusion-spec
1s-A: "inheritance-spec"
CTYPE:

range: (or slot value)

SLOT-RESTRICTION: (not t)
range: "must follow <schema-op> grammar"

VALUE-RESTRICTION: (not t)
range: "must follow <value-op> grammar" }}

Schema 5-5: The exclusion-spec schema

The following is an example of an exclusion that could be used to restrict the house schema’s
inheritance of a particular value. The house schema is related to the building schema by an "is-a"
relation. However, this particular house belongs to an architect, and is round. Therefore it is
necessary to restrict the relation between house and building so information about a building’s
walls is not inherited by the house schema. '

USER DEFINED RELATIONS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 51

{{ building
HAS-WINDOWS:
HAS-DOORS:
HAS-FLOORS:
HAS-WALLS: "four” }}

{{ house
1S-A: "building:
INSTANCE: "is-a"
exclusion: "walls-ex-spec" }}

To create the walls-ex-spec, type:

1.(mk-schema "walls-ex-spec™ ("is-a" "inheritance-spec")
(lltypell "Value") ("Value" ll[ourll))
"walls-ex-spec"

{{ walls-ex-spec ’
IS-A: "inheritance-spec” N . 3
TYPE: "value"

VALUE: “four" 1) ,

Schema 5-6: The walls-ex-spec

5.1.5. Elaboration-spec

Elaboration-specs are used to refine the definition of a slot. The elaboration-spec provides slots
defining both the slot is t6 be elaborated, and the slots resulting from the elaboration. Like other
inheritance-specs, the elaboration-spec contain DOMAIN and RANGE siots, specify and the condition

when the spec applies. The elaboration-spec schema is given below.

USER DEFINED RELATIONS

PAGE 62

{{ elaboration-spec
IS-A: "inheritance-spec"
SLOT-DEPENDENCY: "elaborates"
SLOT-RESTRICTION:
range: {(schema (type "is-a" "slot"}))
NEW-SLOTS!
range: (all (schema (type "is-a" "slot"))) }}

Schema 5-7: The elaboration-spec schema

The fields of the elaboration-spec that differ from or, did not appear in previous inheritance-specs, are
described below.

SLOT-RESTRICTION: The slot restriction is the slot in'the range schema to be elaborated into new-slots
in the domain schema. This only allows one slot.

NEW-SLOTS: Any slot matching the SLOT-RESTRICTION is elaborated into the new slots specified by the
NEW-SLOT restriction. The value of the NEW-SLOTS slot must be a list of slot names.

Each stot specified in NEW-SLOTS will be created (i.e. slotc) inherited using this spec, providing the
slot speciﬁed in SLOT-RESTRICTION either exists in the range schema, or may be inherited by it. Values
may not be inherited with elaboration specs. The SLOT-DEPENDENCY relation will specify the relation
used to link the meta-schemata of the new slots to the meta-schema slot being elaborated. An
example:

{{ mammal
BODY: }}

{{ dog
1S-A "mammal" _
Elaboration: "dog-elab" }}

{{ dog-elab
INSTANCE "Elaboration-spec”
SLOT-RESTRICTION: "body"
NEW-SLOTS: "left-front-leg" "right-front-leg"
“left-back-leg" "right-back-leg"
"torso” "neck" "head" }}

Schema 5-8: The dog-elab-spec

The slots LEFT-FRONT-LEG, RIGHT-FRONT-LEG, LEFT-BACK-LEG, RIGHT-BACK-LEG, TORSO, NECK, and HEAD

USER DEFINED RELATIONS

21 SEPTEMBER 1984 SRL2 MANUAL - PAGES3

elaborate the BonY slot in mammal. All of the new-slots are created in the domain schema (i.e. dog)
at the time of the first access of a new-slot. The elaborated schema has the following form;

{{ dog
1S-A: "mammal”
LEFT-FRONT-LEG:
RIGHT-FRONT-LEG:
LEFT-BACK-LEG!
RIGHT-BACK-LEG:
TORSO:
HEAD:
NECK: }}

Schema 5-9: The dog schema with elaborated slots

If the switch slot-dependencies is non-nil, SRL creates an elaborates relation linking each of the
new slots to the slot being elaborated (in this case, BODY). The elaborates relation is attached to the
meta-siot of each of the slots involved in elaboration. The elaborates relation is used, because the
above spec does not specify a SLOT-DERENDENCY, and elaborates is the default relation. The
following is an example of the meta-siot for the LEFT-FRONT-LEG slot:

{{ dog.left-front-leg
~ INSTANCE: relation
DOMAIN: "dog"
sLoT: "left-front-leg"
ELABORATES: "mammal.body" }}

Schema 5-10: The meta-siot of the LEFT-FRONT-LEG slot

This example shows how the LEFT-FRONT-LEG slot of the dog is related to the 8oDY of the mammal by
an elaborates link,

SRL provides functions for returning the elaborations of slots in specified schema.

(slot-elab <schema) <slot> [<context> [<path>1])
RETURNS: the slots in {<schema> that are elaborations of <slot>.

(slot-ljnlab <schema> <slot> [<context> [<path>]1])
RETURNS: the slot that <slot> is an elaboration of.

USER DEFINED RELATIONS

PAGE 54

5.1.6. Map-spec

The Map primitive allows the representation of one to one mappings between slots, and
transformations on their values. For instance, a mammal's front legs could be mapped onto man's
arms. Like all other specs, the map-spec uses the DOMAIN, RANGE, and CONDITION slots. The map
primitive uses the relation mapped-from for siot and value dependencies.

{{ map-spec
1S-A: "inheritance-spec”
SLOT-DEPENDENCY: "mapped-from"
VALUE-DEPENDENCY: "mapped-from”
DOMAIN-MAP:
range: "must follow <schhema-op> grammar"
cardinality: (1 1)
RANGE-MAP!
range: (schema (type "is-a" "slot"))
cardinality: {0 1)
MAP-FUNCTION: }}

Schema 5-11: The map-spec schema

The map-spec has two ihdependent functions. The first is mapping one slot name onto another,
The second is.mapping one value onto another. One slot is mapped onto another only when one slot
is specified in the DOMAIN-MAP, and a different siot is specied in the RANGE-MAP. If more than one slot
is specified in the DOMAIN-MAP, or no slot is specified in the range-map, then the RANGE-MAP is
ignored, and the same slot is used for the range, '

If inheritance is to be performed, and the DOMAIN-MAP matches the slot being searched for, then the
range schema is searched for a value in the RANGE-MAP. If a value is found, it is altered by applying

the MAP-FUNCTION to it. A map function specified by the user must accept the following parameters:
(<map~function> <domain> <reTation> <{range> <uvalue> <{context>)

The domain argument in the example above is the schema in the domain of the relation. The relation
argument is the relation along which inheritance is proceeding. The range argument is the schema in
the range of the relation, and uvalue is fthe;yalue to be inherited, in unit form. The function returns the
new value either in unit or value form. If no map-function is specified, then the identity function is
assumed.
An example of the map’s use is the creation of a relation called toy. The toy relation transforms the
dimensions of the range-map when inherited by the domain of the relation. Because the DOMAIN-MAP
may match more th.a" one slot, the RANGE-MAP is not specified. SRL assumes that the name of the

USER DEFINED RELATIONS

21 SEPTEMBER 1984 SRL2 MANUAL ' : PAGE 55

slot in the range will be the same as the slot in the domain, and only the value is transformed.

{{ toy-dog
Tov: "dog" }}

{{ toy
1s-A: "relation"
MAP: "toy-map-spec" }}

{{ "toy-map-spec"
INSTANCE: "map-spec”
DOMAIN-MAP: (type "is-a" "dimension")
MAP-FUNCTION: scale }}

{defun scale (domain relation urange uvalue context)
(times .1 (unitg uvalue))))

Schema 5-12: The toy-map-spec

5.1.7. Introduction-spec

Sometimes, it is desirable to add new slots to a schema when a relation is instantiated. The
introduction-spec allows new slots to be added to the schema when a relation is attached. For
example, if fido is to guard a house, (fido GUARDS house) implies that fido has some new attributes
that are not defined in the house schema, such as "control-commands.” The introduction-spec
enables the new attributes to be attached to fido.

USER DEFINED RELATIONS

PAGE 56

{{ introduction-spec

is-A: "inheritance-spec”

NEW-SLOT:
range: (type "is-a" "stot")
cardinality: (1 1)

META-SLOT:
range: (set (type “INSTANCE" "introduction-spec"))
cardinality: (0 inf)

NEW-VALUE:

- META-VALUE:

range: (set (type “INSTANCE" "introduction- spec"))
cardinality: (0inf) }} -

Schema 5-13: The introduction-spec schema

An introducticn-spec specifies a stot to be created in the NEW-SLOT slot. A list of introduction specs
may be specified for the meta-slot of the slot, which was created. This list is the value of META-SLOT.
Optionally, the spec may specify values stored in the NEW-VALUE slot, to fill the slot created by the
intro-spec. Introduction specs are specified'for each value in the corresponding value of the
META-VALUE slot of the spec. The META-SLOT and META-VALUE defines what can be introduced for the
slot and value respebtively. They contain introduction-specs.

Introduction specs can be expensive to use because checking for intro-specs must be done
whenever a slot is created. Intro-specs are controlied by the $introduction switch. If the switch is
set to "t," the intro-specs are checked when a slot is created. Intro -specs are not checked when the
switch is set to nil. The default setting for $mtroduct|on is ml

In the example below, the guards relation is defined to introduce the CONTROL-COMMANDS slot, with
the four values specified, into any schema given a GUARDS slot. When the GUARDS slot is created in

fido, the slot CONTROL COMMANDS is also created The values, "kifl," "maim," "stop,”" and "stay" are
added to the CONTROL-COMMANDS slot. The spec for each value's meta-value is then

evaluated.Introduction specs are evaluated when a slot is created. Notice the DOMAIN and RANGE
restrictions have been used. The GUARDS slot may only be placed in schemata that are of (type "is-a"
"mammal®) (which in this example Fido 1s-A), and may only be filled with a "person” or "place" (the
Jones house 1S-A "place”). -

USER DEFINED RELATIONS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 57 '

- {{ guards
IS-A: "relation”
DOMAIN: {type "is-a" "mammal")
RANGE: {schema (or (type "is-a" "person")
(type "is-a" "place")))
INVERSE: "guarded-by"
INTRODUCTION: "guard-intro"

{{ guard-intro
INSTANCE: introduction-spec
NEW-SLOT: "controt-commands"
NEW-VALUE: "kill" "maim" "stop" "stay"
META-VALUE: ("kill-intro") ("maim-intro") ("stop- mtro") {"stay-intro") }}

{{ kill-intro
is-A: "introduction-spec”
- NEW-SLOT: "instance"
NEW-VALUE: “kill-command” }}
{{ tido
I1s-A: "dog”
GUARDS: "Jones house"
CONTROL-COMMANDS:
"ki""
instance: "value" "kill-command"
Ilmaimll
instance: "value" "maim-command”
ustopu
instance: "value" "stop-command"”
“Stayll
instance: "value" "stay-command" }}

{{ Jones house
1S-A: "place" }}

5.2. Creating and Using Relations |

5.2.1. Creating Relations
The following is a recipe for building a new relation:
1. Create a schema with the name the relation is to have (e.g. create a pet-of schema).

v ' 2. Link the new relation to the relation hierarchy. The simplest way to link the new relation is
to create an 18-A slot using slotc, and fill it with the value "relation”. It is important that

_ USER DEFINED RELATIONS

PAGE 58

the new relation be linked to the relation schema, directly or indirectly. The actual
relations used, are not important (with the qualifications given in section 5.1). The new
relation must be able to inherit all the relation schera’s slots.

3. Fill the DOMAIN, RANGE, TYPE, CONDITION and INVERSE slots as desired. SRL will attempt to
inherit all values not directly specified in the new relation.

4. Build any inheritance specs needed to specify the relation desired. Existing inheritance
specs may be re-used even if they are already used in other relations.

5. Fill inheritance-spec slots with the names of the spec instantiations.

8. [optional] Create a transitivity grammar for the relation (see section 6.1) and store it in the
PATH slot of the relational schema. ’

7. Declare the relation as compiled or interpreted. This is discussed below.

SRL2 determines whether a slot and/or its value can be ihherited along a relation by interpreting the
inheritance specs defined in the relation. Inheritance specs are examined in the following order:

1. exclusion If an exclusion spec matches the slot under consideration, the inheritance
cannot take place along the relation.
2. elaboration
3. map
4, inclusion
If a relation has an introduction spegc, it is evaluated when the relation is created in the schema,

resulting in the introduction of the information in the designated schema at that time.

The following relations are used to declare and test relations:

(relation <relation-list> [<context>})
RETURNS!: t
-SIDE-EFFECT: Declares <relation> to be an interpreted relation.

(refation-p <refation> [<context>])
RETURNS: t if {relations> has been declared to be a relation

(relationp [<context>])
RETURNS: A list of ail the relations that have been declared to the system.

5.2.2. The Relation Compiler

Inheritance is faster when relations are compiled instead of interpreted. The most efficient compiled
relations only employ inclusion specs with simple DOMAIN and SLOT restrictions. The powerful type
facility is expensive, and slows down inheritance. Using a range restriction means that each value in

the relvation must be checked. If all ranges are acceptable, only the relation’s slot and domain must be

CREATING AND USING RELATIONS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 59

checked. Restricting the values will not slow inheritance significantly.

Inheritance perf‘ormed by interpreting a relation is very slow. Yet one advantage to using interpreted
relations is that their definition is dynamic, whereas the definition of a compiled relation is fixed at the
time of compilation. The interpreted relation's definition will change accordingly when alterations are
made to other relations in the relational hierarchy. Changes made o other relations are inherited by
the interpreted relation each time it is used.

(relationc <relation-list> [<context>])
RETURNS: t
SIDE-EFFECT: Declares <relation> to be a relation and compiles it.

(relationd <refation> <relation-list>})
RETURNS: {
‘SIDE-EFFECT: Deletes the relation from the relation list.

'5.2.3. Using Relations

Once a relation has been defined (by SRL or by the user), it must still be put into a schema to be of
any use. Placing a relation in a schema involves two steps. In order to declare <schemal> to be
related to <schema2> by the <relation> relation:

1. Create a <relation> slot in <schema1> (a slotc command)

2, Fill the <relation> slot of <schema1> with the vélue <{schema2> (a valuect command).

Inheritance may now take place along this relation if inheritance properties for <relation> have been
defined by the User.- Note, however, that adding and filling an instance of the reiation are subject to
the poMaIN and RANGE restrictions of the relation (see section 4.3). Auto-linking (section 4.4) may
take place when the slot is filled.

Any time a slot is created that iepresents a declared relation, SRL notes that the slot is a relation. A
relaiton cannot be removed, just as a slot's designation cannot be changed. If an attribute slot is
created, it remains an attribute slot even if the attribute slot is later declared to be a relation.

5.3. Caching and Dependency Links

Slots and values are inherited by SRL when they are needed. For example, fido needs four legs to
run, so he inherits NUMBER-OF-LEGS slot and its values from dog schema. if the slot is accessed,
(i.e.valueg1("fido" "number-of-legs" "four")), then four is inherited down from dog. Slots and values
are not stored in the schema where they are inherited to, unless they have been modified. If there is

CREATING AND USING RELATIONS

PAGE 60

any attempt to alter the contents of a slot within a schema, the slot is copied down into that schema. !f
the values are to be used in the new slot then, they are copied down. A vaiuec only copies the siot
since the values have been supplied by the user. A vatued command copies down the new values to

delete the appropriate value(s).

{{ fido
INSTANCE: "dog" }}

{{ dog
1S-A: "mammal”
INSTANCE +INV: "fido"
" HAS-COLOR:
" NUMBER-OF-LEGS: "4" }}

Schema 5-14: The inherited value "4" is copied into the dog schema

The user can force slots and values to be cached whenever they are inherited. Caching values is
governed by the $cache switch. If $cache is set to t, whenever a value or stot is inherited into a

schema, a copy is stored in the schema. For example, if $cache is set to t when inheriting the .

NUMBER-OF-LEGS slot and its value, then a copy of the slot and value would be stored in the Fido
schema. If $cache is set to nil, then the value "4" would be inherited and returned to the user, but
neither the NUMBER-OF-LEGS slot or the value would be copied into the fido schema. It is
recommended to operate with the $cache switch on if the value will be retrieved frequently.

Often, it is important to kinow where a slot or value was inherited from. A dependency mechanism
puts links in place to represent data dependencies resulting from inheritance. Simply put, the links
indicate where a slot or value was inherited from. The $slot-dependency and
$value-dependency switches control whether dependency links are put in' place for slots and
values respectively. The links are put into place when the vélueb of the switch is non-nil. |

_Dependency links for inherited slot stake the form of relations. The relations link the the meta-slots of
the slot inherited from and the newly inherited slot. The relation used as a dependency link is
determined by the inheritance spec used during inheritance. The value of SLOT-DEPENDENCY in the
appropriate inheritance spec becomes the relation used to link the two meta-siots.

CACHING AND DEPENDENCY LINKS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 61

{{ fido
is-A: "dog"
‘COLOR: "black"”
included-from: "dog-color-meta"
schema: "fido"
slot: "color" }}

{{ dog
IS-A + INV: "fido"
COLOR:
included-to: "fido-color-meta”
schema: "dog"
slot: "color" }}

In the example above, the 1S-A relation is used to the link the meta-slots of fido and dog. The 1S-A
relation is used because he SLOT-DEFENDENCY slot of the inheritance-spec was filled with the value
1S-A. The meta-slots of fido and dog contain included-to or included-fror facets, a schema facet,
and a sfot facet. The meta-slots provide information about the schema inherited from (in this case,
dng), or the schema inherited to (in this case, fido), and the slot being inherited (in this case, COLOR).

Dependencies between inherited values is noted in the same way, except they are denoted by
relations linking the meta-values-of the values involved in inheritance. The relation used is found in
the VALUE-DEPENDENCY slot of the spec.

There is an interaction between the $meta-slot and $siot-dependency switches, and between the
$meta-value and $value-dependency switches. If $meta-slot and $meta-value hold the name of a
schema, then meta-siots and meta-values are automatically created. Meta-slots are automatically
linked to the schema fepresenting the slot (whicir the meta-siot has information about) by an instance
relation. For example, the meta-slot on the HAS-COLOR slot would be made an instance of has-color
schema. Meta-values are automatically linked to the value of the $meta-value switch by an
INSTANCE relation. However, if a dependancy was noted for an inherited slot or value, the INSTANCE
relation is not put in. Turning on dependencies when the appropriate meta switch is not on, is an

error.

5.3.1. Local Specialization of Relations

Relations may be specialized with each instance of their use. A relation’s inheritance semantics can
be altered by specifying the desired change in the relation’s inheritance specification facets. For

CACHING AND DEPENDENCY LINKS

PAGE 62

example, it may be said a platypus is-a mammal, however, the platypus birth process is not
mammalian. Thus, it is necessary to restrict the relation so information about a mammal’s birth-
process is not inherited by the platypus schema. First, an exclusion-spec denying inheritance of the
birth-process values, but not the slot slot itself (the platypus still has a birth process, even if not
mammalian), must be constructed. The relation is specialized by filling the exclusion facet of the 15-A

slot in platypus with the birth-exclusion-spec.

The following schemata define the BIRTH-PROCESS slot's exclusion from inheritance along the is-A
relation linking platypus to mammal. The exclusion specification birth-ex-spec is placed in the

EXCLUSION facet of the 1S-A slot in platypus.

{{ ptatypus
is-A: "mammal"

" INSTANCE: "is-a" - . -
exclusion: "birth-ex-spec" }}

{{ birth-ex-spec
INSTANCE: "exclusion-spec"
TYPE: slot
sLOT: "birth-process” }}

A recipe for specializing relational schemata is given below:
1. Create any inheritance-specs needed to modify the relation (see section on user defined
~relations).) ‘ '

2. Get the meta-slot attached to the relation in question. For the platypus cxample, this
would be the meta-slot attached to the 18-a slot. If a meta-siot does not exist, then create
one,.

3. Create slots in the meta-slot for each inheritance-spec. Slot names correspond to
inheritance-spec type as with user defined relations. It is usually the case that the meta-
slot is related to the relation schema, hence inherits the standard inheritance
specification slots.

4. Fill the slots with the names of the new inheritance-specs.
To undo a specialization of a relation, repeat the same process but delete the slot and value instead.

Local specialization of a relation is controlled by the $local switch. If it is set to t, then local
specializations of relations will be interpreted (default is set to nil), otherwise they will be ignored.

CACHING AND DEPENDENCY LINKS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 63

Function summary: relation commands

mk-schema: is a utility function that enables an entire schema to be specified in one command.
However, meta-information associated with the schema cannot be specifiad with the command. mk-

schema should be used to build relations.

(relationc <relation-list> [<context>])
RETURNS: t
sIDE-EFFECT: Declares <relation) to be a relation and compiles it.

(relationd <relation> <relation-list>) }
RETURNS: t
SIDE-EFFECT: Deletes the relation from the relation list.

(relation <relation-list> [<context>])
RETURNS: t :
SIDE-EFFECT: Declares <relation> to 'be an interpreted relation. * -

(relation-p <relation> [<context>])
RETURNS: t if <relations> has been declared to be a relation

(relationp [<context> 1)
RETURNS: A list of all the relations that have been declared to the system,

Relevant switches:

$cache: if the switch is set to t, then a copy of an inherited slot or vatue is stored in the schema that
‘ inherits the siot or value.

$value-dependency: if set to t, then dependency links for values are put in place.

$s|ot-dependen¢y: if set to t, dependency Iihks are put in place for‘slots.

$introduction: if the switch is set to t, introduction-specs are checked when a schema is created.

Siocal: if set to t, then local specializations of relations are interpreted.

CACHING AND DEPENDENCY LINKS

PAGE 64

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 65

6. Paths and Inheritance

This chapter shows how paths can be used to control the inheritance search, define a relation’s

transitivity, and form complex schema types.

PAGE 66

{ 6.1, Paths

The construction and interpretation of relations was discussed in the previous section previous
section. However, the discussion only addressed individual relations. Most models contain many
relations which form complex, tangled hierarchies. It is important, particularly for inheritance, to
understand and control how relations ihteract. Paths are one tool for controlling séarch through a
network of relations. Paths can be used to both guide inheritance and define the transitivity properties
of relations. The transitivity property of a relation refers to how the relation connects two schemata,
but does not necessarily indicate whether the schemata can inherit information from eachother.

A path is like a map that defines each step (or alternative to a step) of an inheritance, thus guiding the
search. Paths are composed of specific slots, meta-slots, values, and meta-values. Paths can also be
composed of specific slot/value patterns, and boolean combinations of these patterns.

The grammar for specifying paths in SRL is presented below. How each conétruct is interpreted is
also discussed. The applications of paths is addressed subsequent sections.

<path> =
(or <pathd>*}|
(list<path>*)|
(repeat <path> <min> <max>) |

(step <slot-op> <value-opd) |
{path <relation>) |
t| nil

<mind i1 = <max> :: = [0, inf]

Figure 6-1: The path grammar

A path is specified as a regular expression. A path is interpreted as a "treasure map," defining each
step (and alternatives) a search may take. The constructs are discussed below.

e or - Any of the sub-paths of the or may be taken.

o list - Each of the sub-paths of the list must be followed in order. The list is only satisfied
when all of the sub-paths are satisfied in the order given. ‘

e repeat - <path> must be satisfied at least <min> times, and no more than <max> times.
This must happen consecuti\(ely. ‘

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 67

e step - The <slot-op> is performed on the relation being traversed, and the <value-op> is
performed on the range of the relation. If both succeed then the step may be made. The
range of the relation becomes the domain of any subsequent steps that are taken. <slot-
op> and <value-op> must be valid restrictions (see section 4.3.1).

» path - The value of the TRANSITIVITY slot of the <relation) is substituted here (see section
6.3). must be fulfilled for the path to be fulfilled. Grammars that are left recursive are
always a problem when using paths. Right recursive grammers are sometimes a problem.

e t - Specifies that all paths are acceptable.

e nil - Specifies that no paths are acceptable. nil indicates that the cuirent schema is an
endpoint of the path being searched. For instance,
(or nil <path>)
means the search either stops immediately, or may explore <path>. nil may also be used
to signify that no inheritance should be performed.

An example of a path restricting the search to only 1s-A relations is:
(repeat (step "is-a" t) 0 inf)

If only alternating I1S-A and PART-OFs are desired:
(repeat (1list (step "is-a" t) (step "part-of" t)) 0 inf)

if the path is restricted to 1s-As and the range of the 1s-a must be a mammal:
(repeat (step "is-a" (schema (type "is-a" "mammal”))) 0 inf)

To search only along relations that have a "search" facet filled with the value "primary", the path

- would be:
(repeat (step (meta (type "search” "primary")) t) 0 inf)

6.2. Path Selection

Multiple roles introduces problems when determining which slot values to inherit if the source of the

slots is ambiguous. Consider the example of "fido™:

{{ fido
- 15-A: "guard” "pet"” 3

{{ guard
TEMPERAMENT: "hostile" }}

{{ pet
TEMPERAMENT: "docile" }}

PATHS

PAGEGS

When requesting the value of fido’s TEMPERAMENT slot, what value should be returned? example {
(valueg "fido" "temperament") = = >"hostile” ? "docile” ? } Hence, a slot's value can be inherited
from more than one piace. SRL allows the user to inherit values selectivély. By specifying a path
expression in the access, only the specified relations will be searched. For example, to restrict

inheritance along only the "is-a" relation to "pet", the access would have the following form:
(valueg "fido" "temperament" nil '(step "is-a" "pet"))

==> (docile)

Note only a single step along the "is-a" relation to "pet" will be made as defined by the path
expression, If "pet" did not contain a value for the TEMPERAMENT slot, relations from "pet” to other
schemata would not be searched for a value. The following path expression could be used to search

any schema related to pet: ..

example { (valueg "fido" "temperament” nil '(list (step "is-a" "pet") 1)) } 3 Unterminated literal 4

Unbalanced parens

Placing at the end of the list permits the access to search along any relation leading out of "pet".

6.3. Schema Typing and Relational Transitivity

Paths and other constructs in SRL talk about types of schemata. Schemata are typed in the following
way: A schema X is said to be of type Y Z if the schema X contains a slot v that has Z as its value.
With regard to the dog schema, dog can be called type 1S-A mammal since the dog schema contains
an 1s-A slot that has the value mammal. Schema typing, as described here, is referred to as atomic

typing.

Atomic typing can be used to specify more complex types by combining two or more atomic types.
For example, fido cannot be said to be type 1s-A mammal because the schema does not have an 13-A
slot filled with the value mammal. But, we can note fido is of type INSTANCE dog, and that dog is of
type 1S-A mammal. Thus two atomic types can be combined to define a more complex type, in this

instance, type iS-A mammal.

Path expressions are used to specify how types combine within the knowledge hierarchy. For

example, type is-a can be defined as:

(14st (repeat (step instance t) 0 1)
(repeat (step is-a t) 0 inf))

This path specification states that a schema is of type 1s-A <schema> if it is linked by an optional

PATH SELECTION

21 SEPTEMBER 1884 SRL2 MANUAIL PAGE 69

INSTANCE relation and an arbitrary number of 1s-A relations to <schema>. Thus, a number of atomic
types have been combined to define a more complex type. Using the type definition created by the
path specification, fido is of type 15-A mammal, since fido is tinked to dog by an INSTANCE relation,

and dog in turn is linked to mammal by an 1S-A relation.

{{ dog
1S-A: "mammal” _
HAS-COLOR: "brown" }}

{{ fido
INSTANCE: "dog" }}

For path such expressions to be recognized for schema typing, the expression must be stored in the
TRANSITIVITY slot of the relation in question. In this example, it is stored in the TRANSITIVITY slot of the
is-a relation. The TRANSITIVITY slot stores a péth describing how two schemata must be related to

satisfy transitivity.

The following functions use path expressions to test a relationship, and generate all schemata
entering into the relation.

(r-test <schema1) <relation> <schema2>)
RETURNS: t if <schema1> satisfies the transitivity grammar for the relation.
NOTE:- Takes the path found in the TRANSITIVITY slot of the <relation> and, using that path
expression, tries to find a path between the <schema1> and {schema?2>.

(r-find <{relation> <schema>)
RETURNS: a list of all schemata that are of type <relation> <schema>
NOTE: Takes the path found in the TRANSITIVITY slot of the <relation> and finds all schemata that
are linked to {<schema) by paths admissible by the TRANSITIVITY.

6.4. Siot Accessibility.

A relation linking two or more schemata allows properties to be transferred (i.e., slots) among
schemata. Understanding when a slot in a related is schema is accessible is important for the user.
The following defines the accessibility of slots in schema B from schema A when a relation R links

schema A to B.

o If the slot already exists in A (by previous inheritance, or introduction), then it is
accessible. :

o |f the slot is the domain of a map spec, then the mapped version is accessible.

o If the slot is the range of a map spec, then it is not accessible.

SCHEMA TYPING AND RELATIONAL TRANSITIVITY

PAGE 70

o If the slot is excluded by an exclusion spec in R, then itis not accessible.

o If the slot is either in the domain (slot) or the range (new-slots) of an elaboration spec,
then it is accessible.

e If the slot is specified by an inclusion-spec, then it is accessible.

The following functions provide the user with information about what slots exist and/or are

accessible:

(slot <schema> [<context>])
RETURNS: the names of the slots directly defined in <schema>.
NOTE: It does not return the names of slots that are accessible by inheritance.

(slote <schema> <slot> [<context> [<path>]])
RETURNS: t if the slot exists in <schema or is accessible by inheritance, otherwise nil.

(siot-all <schema> <path> [<context>])
- RETURNS: a list of slots accessible along the path specuflcatlon

6.5. Inheritance Algorithm

SRL uses a breadth first search when inheriting slots. Values are inherited by checking to see if
inherited slots contain values. When inheriting a slot, SRL first checks all the schemata that are
separated from the original schema by only one relation. Then the schemata two relations away are
searched and so on. At each level, relations are searched in the order they were created in the
schema.? Inheritance proceeds until a slot is found. For each relation, the values are searched in
order they appear in the slot. Value inheritance proceeds until a slot is found which has values. [f
$inherit-all is non-nil inheritance for values proceeds until all values have been found.

Only slots that were créafed as relations are used for inheritance. The user may further narrow the
search by using the path argument to the function being called, which specifies acceptable paths for
inheritance to foliow. If the path is not provided a path of t is assumed, and all relations are searched.

SRL2 determines whether a slot and/or its value can be inherited along a relation by interpreting the
inheritance specs defined in the relation. The order is given in section 5.2.1.

When the definition of a slot is inherited from schema A to B, the following is performed:

1. A slot is created in schema B.

2. If $slot-dependency is non-nil, a meta-slot is created for the new slot in schema B, and
it is linked to the meta-slot of the inherited siot in schema A by the relation specified in the

8Fteading the relations top to bottom as they appear in the pretty-printed schema gives the order in which they were created.

SLOT ACCESSIBILITY

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 71

spec that allows the inheritance.

When a value is inherited from schema A to B, the following is performed:

1. A value unit is created and added to the slot in schema B. o -

2. 1f $value-dependency is non-nil, then a meta-value is created for the value in schema
B, and is linked to the meta-value of the value in schema A by the relation specitied in the
spec.

Function Summary: commands to test transitvity

(r-test <schema1> <relation> <schema2>)
RETURNS: t if <schemia1) satisfies the transitivity grammar for the relation.
NOTE: Takes the path found in the TRANSITIVITY slot of the (relation> and, using that path
- expression, tries to find a path between the <schema1> and <schema2>,

(r-find <relation> <schema>)
RETURNS: a list of all schemata that are of type <relation> {schema>
NOTE; Takes the path found in the TRANSITIVITY slot of the <relation> and finds all schemata that
are linked to <schema) by paths admissible by the TRANSITIVITY,

Relevant switches:

$inherit-all: if set to t, then inheritance continues unitl all possible values to inherit have been found.

INHERITANCE ALGORITHM

PAGE 72

21 SEPTEMBER 1984 SRL2 MANUAL

7. Contextis

PAGE73

This chapter illustrates the context facility and the way it extends user capabilities by enabling version

management of different scenarios and alternate worlds reasoning. Contexts are also structured to

'~ save time and space when dealing with the database.

PAGE 74

7.1. Using contexts

SRL2 provides the user with a context mechanism. A context serves as a virtual copy of a collection
of schemata. Contexts allow the user to extrapolate from a model without destroying the original
model. This can be useful for conducting simulations with the same starting point. Schemata can be
created, altered, and deleted without changing the original model. While making an actual copy of all
the schemata would achieve the same effect as contexts, the context tacility only copies those
schemata used within the new context, which saves time and space. When dealing with very large
darabases, saving space and time can be important.

When SRL2 is initialized, the user is automatically put into the context "$root-context™. Any new
context created by the user will be a subcontext of the "$root-context". Contexts are arranged in
trees, so that every context (other than the “$root-context”) has a single parent context, and may
have an indefinite number of children contexts. Any context may assume/access/inherit information
found in any of its ancestor contexts, but may not assume information found in descendant contexts.
When accessing information in SRL, first the specified context is checked for the information. If the
required information is not found, then the parent of this context is checked for the information. The
process continues until the information is found, or the root of the context tree is reached. When a
schema containing the desired information is found within a parent context, the schema is copied
down to thie child context where the search for the information began.

Creating or accessing a schema always occurs within a context. A context may be specified in which
o look for the schema. If no context is specified, the search begins in the context name held in
variable $context. A schema name must be unique within a context. However, schemata with the
same name may exist within different contexts, and contain conflicting information. For example, a
user might have two contexts, "Pluto” and "Mars", each containing a horse schema. The blood-
color slot of the dog schema might have a value of "red" in the context of "Pluto", but have a value of
"green” in the context of "Mars".

Contexts can be used in two or more ways. The context facility can be used to support version
management of models. Each time a revision of the SRL model iakes place, a new context can be
created. Changes can be made in the new context and merged with the original context. The context
facility can also be used for alternative worlds reasoning: A context can be created for each world -
being simulated. The results of each simulation scenario, or possible world, can be contrasted with .

other simulations.

The following example depicts dog as two different schemata. The first example shows the schema
as it appears in the "$root-context”. The second shows the schema as it appears in another context,

21 SEPTEMBEF 1984 SRL2 MANUAL PAGE 75

"Mars", which is a child of the "$root-context”.

: dog schema as it appears in the "$root-context"
{{ dog
BLOOD-COLOR: "red"
BIRTH-PROCESS: "live" }}

; dog schema as it appears in the context "Mars"
{{ dog
BLOOD-COLOR: "green"
BIRTH-PROCESS: "hatched" }}

Assume a third context, "Earth," also exists, and is a child of the "$root-context" (thus a sibling of
"Mars"). Accessing the value of the BIRTH-PROCESS slot in the dog schema in the context "Mars"
would return "hatched,”" while accessing the same value in the "Earth” context will return "live."
Accessing the BIRTH-PROCESS value in the "Mars" context was completed when the value "hatched"
was found and returned. The same value was accessed in the "Earth" context, but the dog schema
does not exist in the "Earth" context. So the parent context of "Earth" "$root-context™) was
accessed, and value "live" obtained and returned. Here is the dog schema as it appears in the
"earth"” context:

{{ dog
BLOOD-COLOR: "red" }}

A default mechanism for contexts has been incorporated into SRL so the context need not be
specified every time an access is made. The name of the current default context is stored in the
variable $context. Choosing a new default context is called asserting a context.

Function Summary: context commands

The following comands manipulate contexts. Contexts can be created, deleted, and tested for a
specific relationship to another context. For instance, the context-parent command returns the

parent context of a child context.

{contextc <child-context> [{parent-context>])
RETURNS: <child-context>

SIDE-EFFECT: Creates a new context <child-context> as a child of context <parent-context>. If

<{parent-context> is not specified, the context held in $context becomes the parent.
NOTE: <parent-context> must already exist, and <child-context> does not exist.

(contextd [<context>])
RETURNS: {context>

USING CONTEXTS

PAGE 76

SIDE-EFFECT: Removes context <context> and its descendants from the context tree. if a context
is not specified the context held in $context is removed.

NOTE: When attempting to remove a context that has children, an error will be generated
requesting the user to delete the children contexts first.

(contexta {coniext>}
RETURNS: {context>
SIDE-EFFECT: Sets the system default context to {context>.

(contextm { <child-context>])
RETURNS: <child-context>
SIDE-EFFECT: Merges the <child-context> with its parent, overwriting old (parent context)
information. If child-context is the current value of $context, then $context is set to the
parent.

{(context-parent [<context>])
RETURNS; the name of the parent context of <context> in the context tree.

(contexi-children [<context>])
RETURNS: the names of all contexts that are children of <context> from the context tree.

(in-context-p <schema> [<context>]}
RETURNS: t if <schema) exists in context <context.
NOTE: this function differs from schema-p in that only <context> is examined for <schema>, and
not the ancestors of <context>.

{contaxt-p <contexD)
RETURNS: t if <context) is a context. Otherwise nil is returned.

‘Relevant switches:

"$root-context": This is the context the user is put into when the system is first initialized.

USING CONTEXTS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 77

8. Altering The SRL Environment

This chapter enumerates the system switches, which enable the user to modity the SRL environment.

PAGE78

8.1. Switches: allow the user to modify the SRL environment

Switches, which have been mentioned throughout the manual, are variables that can be set to have
different values. Changing the switch settings allows the user to alter the SRL environment. Switch
settings are changed by giving the switch a different value. Some switches take schema ndames as
values. For example, the switch $meta-slot holds the name of a schema. The switch is on when it
holds the name of a schema. All meta-slots generated when the switch is on are linked to the schema
whose name is held by the switch. When the switch is empty (in other words, it does not hold a
schema name), it is off, and no meta-slots are generated.

Other switches take different values. For example, $inverse can have the values all, none, or
relations. If the switch has the value all, then inverse links are put inptace for all slots. The switch is off
when it is set to none. The user can set switches according to his needs, or maintain the default
settings provided by SRL.

Here is the mechanism that controls SRL switches, and allows the user to set and retrieve their

values.

(stl-get <sri-switch?)
RETURNS: The value current of the sri-switch.

(srl-set <srl-switch> {switch-setting>)
RETURNS: <switch-setting> '
SIDE-EFFECT: The value of srl-switch is set to switch-setting.

These two functions provide the means to set and get (retrieve) SRL switches. To provide further
ease for the user, srl-let environment aliows the user to lambda bind the values of their choice any
number of switches. These settings are removed when the user exits srl-let environment. srl-letis a

macro.

The basic database for SRL provides another means of altering switch settings. SRL'’s basic
database contains a schema called SRL. Each slot in SRL corresponds to a system variable. The
value of the slot contains SRL's default settings for switches. The user may alter the performance of
SRL in one of two ways. He may either reset the values in SRL, and re-initialize SRL using the SRLinit
funiction described below, or he can set the variable’s value directly using a LISP setq function.

There are two functions for initializing and viewing the current settings of system variables.

(SRLpp)
NOTE: prints out the current settings of all system variables defined in the rest of this chapter.

(SRLinit [<schema>])
NOTE: initializes all system variables to those specified in <schemad. If no schema is specified,
then the SRL schema is used. If a schema is specified, it should be an instance of the

21 SEPTEMBER 1984 ' SRL2 MANUAL PAGE 79

SRL schema.

"$root-context” This is the name of the root context which all context trees stem from. This
context is created automatically with an SRL environment, and is used as the
default context when the system is initialized.

$access The name of the current srl function call being made is maintained in this variable for error
handiing.

$current-error contains the name of the latest instance of the SRL-error schema that was created.
$db-cache-unlimited: If this is non-nil, then schemata cannot be swappen-out.
$db-cache-max: The maximum number of schemata that can be resident in core memory.

$db-cache-keep: The number of schemata that can remain resident in core memory after excess
schemata are swapped-out.

$defauit-context Holds the name of ihe current default context used by the system, and is initialized
to "$root-context”.

$queuelength: Holds the number of schemata currently resident in the cache.

$uache Specifies whether or not inherited information is to be cached at the point where it was
inherited, or recomputed each time it is needed. A non-nil value will cause the
information to be cached. The meta-values of the cached value and the original
value are linked by an includes, elaborates, or maps relation depending on the
particular inheritance specification used. The default value is nil.

$demon A value of ¢ will enable the checking and evaluation of demons attached to slots during slot
access. Defaultis nil,

$inherit-all If t, then all relations are searched for the existence of all values for a slot, and the
results added to the slot. if nil, then search stops at the first value found. Default:
nil. :

Sinverse When a slot <slot> in schema <schema> is filled with a value that is also a schema
(¢<schema-2>), a slot <inverse-slot> is constructed in <schema-2> and is filled with
the value <schema)>. Thus a backward link has been created. Setting $inverse
to all enables this facility for all slots. A setting of relations enables it for
relations. With a setting of none no inverse linking is performed. The default
value is relations.

$local: Inheritance relations may be specialized at each instance of their use. The specializing
inheritance specsare interpreted if the switch is set to 1. If the switch is set to nil,
local specializations are ignored. The default value is nil.

$meta-schema: If non-nil, then a meta-schema is created for a schema at schemac time. The
meta-schema is linked to the value of $meta-schema by an INSTANCE relation.

SWITCHES: ALLOW THE USER TO MODIFY THE SRL ENVIRONMENT

PAGE 80

Default is schema.

$meta-slot: if non-nil, then a meta-slot is created for a slot at slotc time. The meta-slot is linked to
the schema of the same name as the slot by an INSTANCE relation. If the schema
with the name of the slot doesn't exist one is created, and linked to the value of -
$meta-slot by an 15-A relation. Defauit is slot.

$meta-value: If non-nil, then a meta-value is created for a value at value creation time. The
meta-value is linked to the value of $meta-value by an INSTANCE relation. Default
is value.

$restrict Specifies whether or not restrictions on slots should be applied to new values of value
facets. A switch value of t will cause restriction to take place, and nil will disable it.
The default value is nil.

$slot-dependency: If this variable is non-nil, then dependency information concerning the
inheritance of slots is maintained.

$value-dependency: If this variable is non-nil then dependency information concerning the
inheritance of values is maintained.

Function summary: commands to set and retrieve switch values

{sri-get <srl-switch?)
RETURNS: The value current of the srl-switch.

(srl-set <srl-switch> <switch-setting>)
RETURNS: {switch-setting>
sIDE-EFFECT: The value of srl-switch is set to switch-setting.

(SRLpp)
NOTE: prints out the current settings of all system variables defined in the rest of this chapter.

(SRLinit [<schema>])
NOTE: initializes all system variables to those specified in <schema>. If no schema is specified,
then the SRL schema is used. If a schema is specified, it should be an instance of the
SRL schema.

SWITCHES: ALLOW THE USER TO MODIFY THE SRL ENVIRONMENT

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 81

9. Error Handling

This chapter provides information about the system’s error-handling facility and its response to

errors.

PAGE 82

9.1. The error-handling system

SRL2 offers a simple error handling system with capabilities similar to ON conditions in PL/1. The
system for handling errors contains an SRL-error schema with stots enumerating the types of errors
SRL detects and signails.

{{ SRL-error
ERROR: "name of error”
SCHEMA: "schema for which error took place”
sLOT: "slot for which error took place” '
VALUE: "value for which error took place”
CONTEXT: "the context in which the error took place™
AUXILIARY: "holds extraneous information relevant to the error”
MESSAGE: "error message generated by system”
ACCESS: "SRL access being performed at time of error”
ACCESS-ARGUMENTS: "The arguments SRL was called with."

NO-SCHEMA:
' range: (type "instance" "error-spec”)

ILLEGAL-SCHEMA-NAME:

range: (type "instance" "error-spec")
NO-SLOT:

range: (type "instance" "error-spec”)
NO-VALUE:

range: (type "instance" "error-spec")
DOMAIN-ERROR:

range: (type "instance" "error-spec")
RANGE:

range: (type "instance" "error-spec")
ILLEGAL-PATH:

range: (type "instance" "error-spec”)
BAD-ELAB-REL-SPEC:

range: {type "instance" "error-spec")
NO-MAP-DOMAIN: '

range: (type "instance" "error-spec”)
ILLEGAL-PREDICATE: v

range: (type “instance" "error-spec")
INVALID-CONTEXT!

range: {type "instance" "error-spec")
INVALID-DATABASE!

range: (type "instance" "error-spec") }}

Schema 9-1: The SRL-error schema

When an error occurs, an instance of the SRL-error schema is generated. The SCHEMA, SLOT, VALUE,

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 83

and CONTEXT slots are filled with the name of the schema, slot, value, and context of the access
causing the error. The name of the latest instance of the SRL-error schema is stored in the variable
$current-error. This schema can be referenced at any time to determine the success or failure of an
access. Next, the SRL-error schema is interrogated for a slot that corresponds to the error. The
contents of the slot should be a single error-spec (figure 9-2), which defines the error system’s

response:

error: A system error is forced.

top-level: a throw is executed from the point of the error in SRL to the user level SRL access
function that caused the error. The SRL access function returns the value
specified in the VALUE slot of the error-spec.

SRL2 interprets an error-spec by first executing the contents of the ACTION slot and either forcing a

lisp error if the type is error or evaluating and returning the value of the VALUE slot. It is assumed the

all functions in the ACTION and VALUE slot take the single parameter: {current-system-error>.

{{ error-spec
TYPE:
range: (or error top-level value)
SIGNAL:
range: {or t nil)
AcTioN: <function>
range: "a function”
VALUE:
range: "a function" }}

Schema 9-2: The error-spec schema

All system errors are generated by cailing the following function:

(SRL-error <error> <access> <access-args> {schema> <slot> <value> <context> <auxiliary>
{message>)

Each of the parameters is stored in the corresponding slot in the new instance of the SRL-error
schema. <errorY is the name of the error and should correspond to a slot in SRL-error. <access> is
the type of access being performed, i.e., valueg, valuec, etc. {access-argsy is the arguments that the
_access function was called with. {schema> is the schema being accessed (if applicable), <slot> the
slot being accessed, and <value> the value being placed (if applicable). <context> is the context
where the access occurred causing the error. <auxiliary> is a wild card parameter to pass any other
information relevant to the error. <message> is the message to be printed to the user. If the error-

THE ERROR-HANDLING SYSTEM

PAGE 84

spec for the error is of type value, then the SRL-error function returns the value. Otherwise a lisp

throw is executed to return to the user level function in lisp error mode.

A list of the errors types already defined for SRL are found in appendix IV,

THE ERROR-HANDLING SYSTEM

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 85

10. SRL_: Object Programming in SRL +

It is often appropriate to model intelligent programming problems as heirarchical structures of entities
containing both data and program code. These entities are most commonly refered to as objects and
the programming paradigm in geneial is known as object oriented programming {first appearing

in the programming language Smalltalk.)

This is of course a very natural thing to do in SRL since its purpose is to represent heirachies of
information. SRL + therefore presents SRL , an object oriented extension to SRL. The only new
concept introduced here is a mechanism by which the contents of a slot are interpreted as program

code,

10.1. Messages and Message Sending

An object is an ordinary schema which may have slots with program code as values or names of
schemata which represent SF%Lh programs or SF!Lp systems. The result of interpreting the code is the
response to sending a message to an object schema. This is done with the function (send-message
<{message>) where message is an instance of the following schema:

{{ message
SCHEMA!
SLOT:
CONTEXT:
PARAMETERS!:
DELETE: }}

Schema 10-1: The message schema

For each member or the list found in the (valueg1 <message> "slot") slot of the (valuegt <message>
"schema"), if it is lambda expression or function name it is executed with the following list of
parameters: (append (valueg <message> "schema") (valueg {message> "slot") (valueg <message>
"parameters")), if it is a SRL, program schema it is loaded into the SRLh interpreter, and if it is a SRL o
system schema it is loaded into the SRLp interpreter. The result of the last evaluation is returned. 3

There are two forms of the send-message function:

(send-message <message>)
RETURNS: the result of the code evaluation
NOTE: send-message is used to procedurally evaluate the the (valueg1 <message> slot) slot in the
(valueg1 <message> schema),

PAGE 86

(send-message <schema> <slot> [<parameter-list> [<context>]])
RETURNS: the result of the code evaluation
NOTE: send-message is used to procedurally evaluate (valueg <schema> <{slot>).

The second form is provided to eliminate the overhead of creating a message schema. |If the firSt

-

parameter to send-message satisfies (r-test <first-param> "is-a" "message"), the first form is

assumed, otherwise the second is assumed.

MESSAGES AND MESSAGE SENDING

21 SEPTEMBER 1984 SRIL.2 MANUAL PAGE 87

11. SRL Data Base System

This chapter explains SRL's multi-user database system.

PAGE 88

11.1. Introduction

DB is a mutli-process data base system especially designed for SRL2. DB creates files to store and
buffer schemata, permitting programs which treat more schemata than can fit in islisp's address
system. The system is designed to be invisible at the user level; the user only deals with DB whén
starting or terminating an islisp process. The database has the extension db.

A user gains access to a database by opening a connection to the database. A database connection
may be read-only or write-enabled. A process makes personal changes to a database with a read-only
connection; such changes are stored in the process’s buffer and are invisible to other processes.
When the process attempts to read the changed data, the process’s buffer will be accessed instead of
the original database. Database changes made during a read-only connection are only written into
the original database after using the dbupdate function. A write-enabled connection writes changes
directly to the database instead of placing the alterations in a buffer.

Multiple processes may have connections to the same database simultaneously, but only if all of the
connections are read-only. A connection can always be changed from write-enabled to read-only, but
a connection can only be changed from read-oniy to write-enabled if no other connection to the
databzse is open. When changing a connection from read-only to write-enabled, a process may
merge changes stored in the process’s buffer with the origiral database.

11.2. DB manipulation

As soon as the number of schemata in memory exceeds the value of variable $db-cache-max,
which is set by the user (initially 500), excess schemata will be automatically swapped-out.
Specifically, those schemafa that have been ieast recently accessad will be written to either thev
temporary buffer or the database itself, depending on the write-mode of the connection, until the
number of associated schemata in memory equals the value of the variable $db-cache-keep, which
is set by the user (initially 250). As soon as the user tries to access a swapped-out schema, it will

automatically be swapped-in from the file.

Currently, database connections are always read-only, except during a db-update call. Db-update
switches/changes/toggles the connection’s write-mode, and can be used to merge buffered
changes into the database file periodically.

An existing database can be accessed by calling db-connect. di-connect allows the user to
access any schemata that were associated with the database when it was last updated.. These
schemata will be swapped-in automatically as the user tries to access them.

21 SEPTEMBER 1984 SRL2 MANUAL ’ PAGE 89

The user should not attempt to save a lisp’s state, once there is an open database.

11.3. DB Functions

bor =+

The following functions that comprise the DB system. Unless otherwise noted, the functions return t
on success and nil on failure. User errors generally invoke an error break.

(db-connect Xdb> ['Xwrite-mode>['<share-mode>['<hew-db>] 1 1)

NOTE: Connects to the existing database <db>, uniless <new-db> is non-nil, then the routine will
create a database. The routine will fail if it tries to connect to a nonexistent database, or
to create an existing one. The default is nil. <write-mode> must be db-write-enabled or
db-read-only. The default is db-read-only. <share-mode> indicates whether the data-
base is to be shared with another process concurrently. <share-mode> must be
db-shared or db-exclusive. All databases end in the extension .db. If the <db> argument
ends in .db, then the argument is used as is. If the argument doesn't end in <db>, the
extension <db> is added. Therefore if <db> were basic the system would use basic.db.
There might be some system specific restrictions (set by the user) in addition to those
listed.

(db-update)
NOTE: Merges buffered changes for database <db>.

(db-close)
NOTE: Closes the database, and flushes all schemata from memory. After a db-close it is
possible to save the lisp.

11.4. Utility Functions

Here are utility functions, which might be of interest to users working with DB in particular
applications.

(db-get-db)
RETURNS: the name of the database SRL is connected to, or nil if there is no database.

(db-check-db '<db>)
RETURNS: t if islisp is connected to <db>, and nil otherwise.

{db-get-contexts)
RETURNS: all contexts associated with the current data base.

(db-get-schemata [<context>])
RETURNS: a list of all schemata in <context> associated with the database.

(db-update-context <context>)
SIDE-EFFECT: Writes all changes to schemata in <context> to the database.

(db-change-write-mode <db> <write-mode>)
SIDE-EFFECT: Sets the writemode of <db> to be <write-mode>.

DB MANIPULATION

PAGEQO
11.5. Global Parameters

These are global parameters to DB, which the user can set.

$db-cache-unlimited: If this is non-nil, then the swapping-out of schemata will be temporarily
disabled.

$dhb-cache-max: The maximum number of schemata that can be resident in a cache.

$db-.cache-keep: The number of schemata that should remain resident after excess schemata are
swapped-out.

$queuelength: Holds the number of schemata currently resident in the cache.

GLOBAL PARAMETERS

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 91l '

Appendix |
-~ Using SRL2

This appendix describes how to start up an SRL system for your persconal use. Defined here is how
the system is used on machines in the Carnegie-Melion environment. Use outside the environment
may vary greatly.

I.1. Initializing SRL2

SRL2 is implemented in Franzlisp (Foderaro, 80) running o‘n a VAX running under the UNIX operatidg
system. The following steps should be followed in starting SRL.2 for the first time:

1. Find the account where the SRL system is maintained on your machine. At CMU it is
list1]/usr/istisp/islisp6.

2. Find the database directory in that account that contains the basic database file. At CMU
it is [isi1]/usr/islisp/islisp6/db/basic.db.

3. Copy basic.db onto your account. This will be the kernel database system that you will
use, .

4. Run SRL2 by tybing the name of the SRL lisp system to the unix shell, At CMU it is called
islisp6 ([isi1]/usr/islisp/bin/islisps).

5, Connect to your basic database system by typing to your SRL lisp system:
(db-connect 'basic)

You are now ready to use SRL2

Upon starting SRL2, a root context will have been created called "$root-context". This will be used
as the default context until otherwise changed by the user. .

|.2. System Limitations

Due to database requirements, alf schema and context names in srl must be strings of at most 30
characters, | addition the character " + " has been reserved and should not be used in the names of
schemata. File identifiers for the data base system must by lisp symbols of at most 99 characters.

PAGE 92 : : co

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 93

Appendix il
User Commands

PAGE 94

21 SEPTEMBER 1984 SRL2 MANUAL ' PAGE 95

Appendix Il
Database Backup System

It is sometimes useful to backup a number of schemata residing in lisp or a database into a file of
executable SRL. commands. A backup of this sort makes it possible to recreate the schemata from a
session that were otherwise lost due to an abortive lisp process or a loss of database integrity. The
following describes a system to accomplish this. Note, however, that the form of the SRL. commands
created by this process bare little resemblance to the SRL. commands available to the user. To create
a backup file, follow the steps below:

1. Start islisp. If schemata are to be backed up from a database, connect to the database(s).
2. Declare a file to lisp using the lisp filte command.
3. For each schema to be stored in the fiie,' use the file-func command described below.

4, When all desired schemata have been associated with a file, use the save-fite command
described below to write the file,

The command find-file is provided so the user may determine which file a schema is associated with.
To restore the schemata to lisp, use the lisp dskin command.
{file-func <schema) <file>)

SIDE-EFFECT: Associates <schema> with <file> so that when <file> is updated, <schema> will be
saved as part of that update

(save-file Xfiled))
SIDE-EFFECT: All schemata associated with <file> are stored in file.

(find-file <schemad)
RETURNS: the name of the file that <schema> is associated with.

PAGE 96

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 97

Appendix tV
Error Messages

The foliowing are the defined error types in SRL:

no-schema:
DEFINITION: Schema specified in the range of a relation does not exist.

SOURCE: slot and value inheritance.
CONTINUATION EFFECT: search continues, but further errors may occur.

illegal-schema-name:
DEFINITION: Schema name specified was not of the proper data type (lisp string).

SOURCE: Schema creation or access.
CONTINUATION EFFECT:

no-slot:
DEFINITION: A slot referred to during access does not exist, nor is inheritable by the schema.

SOURCE: value creation/appending.
CONTINUATION EFFECT: execution continues with further errors possible.

no-value: .
DEFINITION:

. SOURCE: .
CONTINUATION EFFECT:

range:
DEFINITION: A range check on the new value of siot failed.

SQURCE: value creation/appending.
CONTINUATION EFFECT: execution continues with illegal value placed in slot.

domain-error:
DEFINITION: {llegal domain for created relation (slot).

SOURCE: slot creation (slotc).
CONTINUATION EFFECT: slot is created.

illegal-path '
DEFINITION: search spec for a slot access is incorrectly defined.
SOURCE: any slot access function {internal: find-slot and find-value).
CONTINUATION EFFECT: search is pruned at point of error.

bad-elab-rel-spec:
DEFINITION: contents of relation slot in elaboration spec are in error.

SOURCE: interpretation of an elaboration spec.
CONTINUATION EFFECT: relation is not created.

PAGE 98

no-map-domain: .

DEFINITION: during the interpretation of a map specification, the domain slot to be mapped is”

not defined.
SOURCE: map specification evaluation.
CONTINUATION EFFECT: the map spec is ignored.

itllegal-predicate:
DEFINITION: illegal/undefined predicate in the condition of slot of a relation.
SOURCE: during relation inheritance interpretation.
CONTINUATION EFFECT: value returned by SRL-error is used as the condition’s value.

invalid-context: ‘
DEFINITION: Context does not exist, or name specified is of wrong data type (must be a lisp
string).
SOURCE: Context creation and access
CONTINUATION EFFECT:

invalid-database:
DEFINITION: Database is not currently active or name specified is not a lisp symbol.
SOURCE: '
CONTINUATION EFFECT:

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 99

Appendix 'V
System Relations

{{ mapped-to
1s-A: "relation” "metaslot-relation"
INVERSE: "mapped-from"
FUNCTION: (function no-inheritance)}}

{{ mapped-from
Is-A: "relation” "metaslot-relation”
INSTANCE-MAP!
INSTANCE-CONTEXT!
INVERSE: "mapped-to" ,
FUNCTION: (function no-inheritance)}} o

{{ elaborated-to
1S-A: "relation” “metaslot-relation”
INVERSE: "elaborated-from”
FUNCTION: (function no-inheritance)}}

{{ elaborated-from
1s-A: "relation" "metaslot-relation”
INSTANCE-MAP:
INSTANCE-CONTEXT:
INVERSE: "elaborated-to"
FUNCTION: (function no-inheritance)}}

{{ inctuded-to
1S-A: "relation" "metaslot-relation"
INVERSE: "included-from"
FUNCTION: (function no-inheritance)}}

PAGE 100

{{ included-from
1IS-A: "relation” "metaslot-relation™
INSTANCE-MAP:
INSTANCE-CONTEXT:
INVERSE: "included-to"
FUNCTION: is-a-fn
INCLUSION: "is-a-inciusion-spec"}}

{{ metaslot-relation
IS-A: "relation"
IS-A + INV: "mapped-to"” "mapped-from" "elaborated-to"
"efaborated-from” "“inciuded-to" "included-from"
FUNCT{ON: {function do-not-use-message)}}

- {{ basic-relation
iS-A: "relation” -
1S-A «INV: "instance +inv" "instance” "is-a + inv" "is-a"
FUNCTION: (function do-not-use-message)}}

{{ instance
1S-A: "relation” "basic-retation”
TRANSITIVITY: (list (step instance t) (repeat (step is-a {) 0 inf))
INCLUSION: "is-a-inclusion-spec"
INVERSE: "instance +inv"}}

{{ instance +inv
iS-A: "relation" "basic-relation”
INVERSE: "instance"}}

{{is-a
IS-A: "relation" "basic-relation™
TRANSITIVITY: (list {repeat (step instance t) 0 1) (repeat (step is-a t) 0 inf))
INCLUSION: "is-a-inclusion-spec”
v INVERSE: "is-a +inv"}}

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 101

{{is-a+inv
1S-A: "basic-relation"
INVERSE: "“is-a"}}

{{ is-a-inclusion-spec
1S-A; "inclusion-spec"
SLOT-RESTRICTION: (not (or "is-a" "instance" "is-a +inv"

"instance +inv"))
VALUE-RESTRICTION: ¢
CONDITION: t}}

PAGE 102

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 103 '

Appendix Vi
History

Schema Representation Language (SRL) is a family of artificial intelligence knowledge representation
languages, which have evolved over the past several years at CMU. The initial reason for creating
another knowledge representation was to explore issues in inheritance (Fox, 1979). As the first
version of SRL became widely used in the Intelligent Systems Laboratory, other reasons for
developing another version arose. A language was needed that was efficient, adaptable, simple to
use, and capable of supporting large applications requiring requiring some form of database
management. SRL has also been expanded to incorporate many of the ideas found in current
knowledge representation systems (Brachman, 1977; Fahiman, 1977; Levesque & Mylopolous, 1977).

Much of .the power of knowledge representation systems is derived from their inheritance -

mechanisms, and from the formalization of their semantics. This work contributes primarily to the
definition of inheritance mechanisms, but also to the formalization of semantics.

SRL approaches inheritance and semantics by:
e allowing users to define new relations and their inheritance semantics declaratively. |
e enabling and differentiating multi-path inheritance.
s allowing schemata to inherit from their parts.
» allowing the user to define new slots, facets, and meta-information,

o allowing selective search specifications by the user.

Early versions of SRL offered an inheritance mechanism with power similar to that of SRL2, but the

cost of interpreting relations with this mechanism proved prohibitive. Subsequent versions of the

language restricted the definition of the facility to help speed up the system. However, the
development of a relation compiler made it possibie to resurrect the inheritance mechanism in its full
generality. Changes in the restriction mechanism increased the regularity of the facility's grammar,
and its generality., SRL2 incorporates these changes in the inheritance mechanism and the restriction
tacility.

Solving other problems also resulted in SRL’s improvement and the user’s benefit. For example, our
applications required the definition of new relations having inheritance semantics peculiar to the
domain. Rather than search for a few universal inheritance relations to solve this problem, a set of
primitives was created for defining these relations and their inheritance semantics. This type of

PAGE 104

feature offers the user maximum flexibility in defining the knowledge representation system.

A third problem, encountered in the definition of SRL, was the basic difference between relations and
attributes. 1t was hard to explain why the possession of an attribute was any different than a structural
relation or a sub-category relation (e.g., is-a). In decribing a "person,” is having a "head" considered
an attribute or a relation? Does having a parameter only imply that there is a relation "to have" or
"possess" between the object and the attribute? SRL solves these problems with slots, which are
relations where information can be transferred bi-directionally. Slots give the user flexibility in
¢0nstructing a knowledge representation system by allowing him to define a relation’s semantics as
he chooses.

SRL2 serves as the hub of a large body of software developed in the Intelligent Systems Laboratory
and is the result of many people’s efforts. In particular, we would like to thank Joe Mattis and Drew
Mendler for their work on the Database system. We would also like to thank Brad Allen, Mike
Greenberg, Mike Rychener and Gary Strohm for their help, comments and ideas.

21 SEPTEMBER 1984 SRL2 MANUAL PAGE 105

References

Bartlett, F.C., (1932), Remembering, Cambridge: Cambridge University Press.

Bobrow D., and Winograd, T., (1977), "KRL: Knowledge Representation Language," Cognitive
Science. Vol 1, No. 1, 1977.

Brachman, R.J., (1877), "A Structural Paradigm for Representing Knowledge," (Ph.D. Thesis),
Harvard University, May 1977.

Fahlman, S.E., (1977), "A System for Representing and Using Real-World Knowledge," (Ph.D.
‘ Thesis), Artificial Intelligence l.aboratory, MIT, Al-TR-450.

Foderaro, J. K., (1980), The FRANZ LISP manual, University of California at Berkeley.

Fox, M.S.,, (1979), "On Inheritance in Knowledge Representation", Proceedings of the Sixth
International Joint Conference on Artiticial Intelligence, Tokyo, Japan.

Fox, M.S., (1981), "The intelligent Management System: An Overview", Technical Report CMU-RI-
TR-81-4, Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA, July 1981.

Kowalski, R.A., (1979), "Logic for Problem Solving", North-Holland, New York.

Lenat, D., (1976}, "AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic
Search," {(Ph.D. Thesis) Computer Science Dept., Stanford University.

Levesque, H., and Mylopoulos, J., (1978), "A Procedural Semantics for Semantic Networks,”" Al
MEMO 78-1, Dept. of Computer Science, University of Toronto.

Minsky M., (1975), "A Framework for Representing Knowledge", in The Psychology of Computer
Vision", P. Winston (Ed.), New York: McGraw-HiIl.

PAGE 106 -

21 SEPTEMBER 1984

index

$access 79

$cache 60,79
$cardinality 37

$context 74,75
$current-error 79, 83
$db-cache-keep 78, 88, 90
$db-cache-max 79, 88,90
$db-cache-unlimited 79, 80
$default-context 79
$demon 79

$inherit-all 79

$inverse 41,79

$local 62,79
$meta-schema 79
$meta-siot 80
$meta-value 80
$queuelength 79, 90
$restrict 24, 80
$root-context 74, 75, 79, 81
$slot-dependency 60, 70, 80
$value-dependency 60, 71, 80

Cardinality facet 37
Context-children function 76
Context-p function 76
Context-parent function 76
Contexta function 76
Contextc function 75
Contextd function 75
Contextm function 76

Db-change-write-mode function 89
Db-check-db function 89
Db-close function 89
Dh-connect function 83
Db-get-contexts function 89
Db-get-db function 89
Db-get-schemata function 89
Db-update function 89
Db-update-context function 89
Demon facet 37

Domain facet 24, 33, 46, 48

File-func function 95
Find-file function 95

In-context-p function 76

Mschema-p function 20
Mschemac function 20
Mschemad function 20
Mschemag function 19
Mslot-p function 26
Mslotc function 26
Mslotd function 26
Mslotg function 25
Munit-p function 32
Munitc function 32

SRL2 MANUAL

Munitd function 32
Munitg function 32

Ps function 17

R-find function 69, 71

R-test function 69, 71

Range facet 33, 48

Relation function 88, 63
Relation-p function 58, 63
Relationc function 59,63
Relationd function 59, 63
Relationp function 58, 63
Restriction-test function 36, 39

Save-file function 95
Schema-p function 17
Schemac function 16
Schemad function 17
Send-message function 85, 86
Stot function 23,70
Slot-ali function 23,70
Slot-elab function 24, 63
Slot-unlab function 24, 53
Slotc function 23

Slotd function 24

Siote function 23,70
Sri-get function 78, 80
Sri-set function 78, 80
SRLinit function 78, 80
SRLpp function 78, 80

Unitg function 32
Uvalued-pred function 31
Uvalueg function 31
Uvalueg1 function 31
Uvaluegn function 31

Value-sort function 30
Vajuea function 29
Valueal function 29
Valuec function 29
Valuec1 function 29
Valuecn function 28
Valued function 29
Valued-pred function 30
Valuedn function 30
Valuedq function 29
Valueg function 30
Valueg1 function 30
Valuegn function 30
Valuez function 29

PAGE 107

